Consider the matrix:
\[ A = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix} \]
The eigenvalues of the matrix are 0.27 and ____ (rounded off to 2 decimal places).
The eigenvalues of a matrix \( A \) are found by solving the characteristic equation:
\[ \det(A - \lambda I) = 0 \]
Where \( \lambda \) is the eigenvalue and \( I \) is the identity matrix.
For the given matrix \( A \):
\[ A = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix} \quad \Rightarrow \quad A - \lambda I = \begin{bmatrix} 2 - \lambda & 3 \\ 1 & 2 - \lambda \end{bmatrix} \]
Now, calculate the determinant:
\[ \det(A - \lambda I) = (2 - \lambda)(2 - \lambda) - 3 \cdot 1 \] \[ = (2 - \lambda)^2 - 3 \] \[ = 4 - 4\lambda + \lambda^2 - 3 = \lambda^2 - 4\lambda + 1 \]
Set the determinant equal to zero to find the eigenvalues:
\[ \lambda^2 - 4\lambda + 1 = 0 \]
Solve this using the quadratic formula:
\[ \lambda = \frac{4 \pm \sqrt{(-4)^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} = \frac{4 \pm \sqrt{16 - 4}}{2} \] \[ \lambda = \frac{4 \pm \sqrt{12}}{2} = \frac{4 \pm 3.464}{2} \]
Thus, the two eigenvalues are:
\[ \lambda_1 = \frac{4 + 3.464}{2} = 3.73, \quad \lambda_2 = \frac{4 - 3.464}{2} = 0.27 \]
Therefore, the second eigenvalue is 3.73.
A color model is shown in the figure with color codes: Yellow (Y), Magenta (M), Cyan (Cy), Red (R), Blue (Bl), Green (G), and Black (K). Which one of the following options displays the color codes that are consistent with the color model?