Step 1: Standard form.
\[
\frac{dy}{dx} + ay = \sin(\omega x)
\]
This is a linear ODE with integrating factor $e^{ax}$.
Step 2: General solution.
\[
y(x) = e^{-ax}\left[ \int e^{ax}\sin(\omega x)dx + C \right]
\]
Step 3: Evaluate the integral.
\[
\int e^{ax}\sin(\omega x)dx = \frac{e^{ax}(a\sin(\omega x) - \omega \cos(\omega x))}{a^2 + \omega^2}
\]
So,
\[
y(x) = e^{-ax}\left[ \frac{e^{ax}(a\sin(\omega x) - \omega \cos(\omega x))}{a^2 + \omega^2} + C \right]
\]
\[
= \frac{a\sin(\omega x) - \omega \cos(\omega x)}{a^2 + \omega^2} + Ce^{-ax}
\]
Step 4: Apply initial condition.
At $x=0$, $y(0)=1$:
\[
1 = \frac{-\omega}{a^2 + \omega^2} + C
\]
\[
C = 1 + \frac{\omega}{a^2 + \omega^2}
\]
So full solution:
\[
y(x) = \frac{a\sin(\omega x) - \omega \cos(\omega x)}{a^2 + \omega^2} + \left(1 + \frac{\omega}{a^2 + \omega^2}\right)e^{-ax}
\]
Step 5: Behavior as $x \to \infty$.
- If $a>0$, exponential term $e^{-ax} \to 0$. Remaining solution:
\[
y(x) \approx \frac{a}{a^2+\omega^2}\sin(\omega x) - \frac{\omega}{a^2+\omega^2}\cos(\omega x)
\]
This is of the form $B \sin(\omega x + C)$. So (D) is correct.
- If $a=0$, solution reduces to
\[
\frac{dy}{dx} = \sin(\omega x), y(0)=1
\]
\[
y(x) = 1 - \frac{\cos(\omega x)}{\omega} + \frac{1}{\omega}
\]
This oscillates around $1$ as $x \to \infty$, so (B) is true.
- If $a<0$, exponential term grows unbounded ($e^{|a|x}$), so (C) would be correct. But note: coefficient is fixed; solution diverges, not tends to simple exponential form stated. Thus (C) is not correct.
- (A) $y \to 0$ if $a \neq 0$ is false because for $a>0$, $y$ oscillates; for $a<0$, diverges.
\[
\boxed{\text{Correct statements: (B) and (D)}}
\]