List-I | List-II | ||
|---|---|---|---|
| (I) | If \(\Phi = \frac{\pi}{4}\), then the area of the triangle FGH is | P | \(\frac{(\sqrt{3}-1)^4}{8}\) |
| (II) | If \(\Phi = \frac{\pi}{3}\), then the area of the triangle FGH is | Q | 1 |
| (III) | If \(\Phi = \frac{\pi}{6}\), then the area of the triangle FGH is | R | \(\frac{3}{4}\) |
| (IV) | If \(\Phi = \frac{\pi}{12}\), then the area of the triangle FGH is | S | \(\frac{1}{2\sqrt{3}}\) |
| T | \(\frac{3\sqrt{3}}{2}\) | ||
(I) → (R); (II) → (S); (III) → (Q); (IV) → (P)
(I) → (R); (II) → (T); (III) → (S); (IV) → (P)
(I) → (Q); (II) → (T); (III) → (S); (IV) → (P)
(I) → (Q); (II) → (S); (III) → (Q); (IV) → (P)
Equation of auxiliary circle \(x^2 + y^2 = 4\)
Let F be \((2 cos \theta, 2 sin \theta)\)
E is \(( 2cos\theta , \sqrt{3} sin \theta)\)
Equation of tangent at E \(x \cos{\frac{\theta}{2}}+ y \sin{\frac{\theta}{\sqrt{3}}}=1\)
It cuts x-axis at \((2 sec \theta, 0)\)
Therefore, G is \((2 sec \theta, 0)\)
H is \((2 cos \theta, 0)\) and F\((2 cos \theta, 2 sin \theta)\)
Area of \(\triangle FGH\) is \(\frac{1}{2}\times2sin\theta(2 sec\theta-2cos\theta)\)\(=2 sin\theta(sec\theta-cos\theta)\)
\((I) \quad f\left(\frac{\pi}{4}\right)=1\)
\((II) \quad f\left(\frac{\pi}{3}\right)=\frac{3\sqrt{3}}{2}\)
\((III) \quad f\left(\frac{\pi}{6}\right)=\frac{1}{2\sqrt{3}}\)
\((IV) \quad f\left(\frac{\pi}{12}\right)=2(2-\sqrt{3})\left(\frac{\sqrt{3}-1}{2\sqrt{2}}\right)^2=\frac{(4-2\sqrt{3})(\sqrt{3}-1)^2}{8}=\frac{(\sqrt{3}-1)^4}{8}\)
So, the correct option is (C): (I) → (Q); (II) → (T); (III) → (S); (IV) → (P)
Let each of the two ellipses $E_1:\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1\;(a>b)$ and $E_2:\dfrac{x^2}{A^2}+\dfrac{y^2}{B^2}=1A$
Let $ P(x_1, y_1) $ and $ Q(x_2, y_2) $ be two distinct points on the ellipse $$ \frac{x^2}{9} + \frac{y^2}{4} = 1 $$ such that $ y_1 > 0 $, and $ y_2 > 0 $. Let $ C $ denote the circle $ x^2 + y^2 = 9 $, and $ M $ be the point $ (3, 0) $. Suppose the line $ x = x_1 $ intersects $ C $ at $ R $, and the line $ x = x_2 $ intersects $ C $ at $ S $, such that the $ y $-coordinates of $ R $ and $ S $ are positive. Let $ \angle ROM = \frac{\pi}{6} $ and $ \angle SOM = \frac{\pi}{3} $, where $ O $ denotes the origin $ (0, 0) $. Let $ |XY| $ denote the length of the line segment $ XY $. Then which of the following statements is (are) TRUE?