List-I | List-II | ||
---|---|---|---|
(I) | If \(\Phi = \frac{\pi}{4}\), then the area of the triangle FGH is | P | \(\frac{(\sqrt{3}-1)^4}{8}\) |
(II) | If \(\Phi = \frac{\pi}{3}\), then the area of the triangle FGH is | Q | 1 |
(III) | If \(\Phi = \frac{\pi}{6}\), then the area of the triangle FGH is | R | \(\frac{3}{4}\) |
(IV) | If \(\Phi = \frac{\pi}{12}\), then the area of the triangle FGH is | S | \(\frac{1}{2\sqrt{3}}\) |
T | \(\frac{3\sqrt{3}}{2}\) |
(I) → (R); (II) → (S); (III) → (Q); (IV) → (P)
(I) → (R); (II) → (T); (III) → (S); (IV) → (P)
(I) → (Q); (II) → (T); (III) → (S); (IV) → (P)
(I) → (Q); (II) → (S); (III) → (Q); (IV) → (P)
Equation of auxiliary circle \(x^2 + y^2 = 4 \)
Let F be \((2 cos \theta, 2 sin \theta)\)
E is \(( 2cos\theta , \sqrt{3} sin \theta)\)
Equation of tangent at E \(x \cos{\frac{\theta}{2}}+ y \sin{\frac{\theta}{\sqrt{3}}}=1\)
It cuts x-axis at \((2 sec \theta, 0)\)
therefore G is \((2 sec \theta, 0)\)
H is \((2 cos \theta, 0)\) and F\((2 cos \theta, 2 sin \theta)\)
Area of \(\triangle FGH\) is \(\frac{1}{2}\times2sin\theta(2 sec\theta-2cos\theta)\)
\(=2 sin\theta(sec\theta-cos\theta)\)
\((I) \quad f\left(\frac{\pi}{4}\right)=1\)
\((II) \quad f\left(\frac{\pi}{3}\right)=\frac{3\sqrt{3}}{2}\)
\((III) \quad f\left(\frac{\pi}{6}\right)=\frac{1}{2\sqrt{3}}\)
\((IV) \quad f\left(\frac{\pi}{12}\right)=2(2-\sqrt{3})\left(\frac{\sqrt{3}-1}{2\sqrt{2}}\right)^2=\frac{(4-2\sqrt{3})(\sqrt{3}-1)^2}{8}=\frac{(\sqrt{3}-1)^4}{8}\)
\((I) → (Q); (II) → (T); (III) → (S); (IV) → (P)\)