List-I | List-II | ||
---|---|---|---|
(I) | If \(\Phi = \frac{\pi}{4}\), then the area of the triangle FGH is | P | \(\frac{(\sqrt{3}-1)^4}{8}\) |
(II) | If \(\Phi = \frac{\pi}{3}\), then the area of the triangle FGH is | Q | 1 |
(III) | If \(\Phi = \frac{\pi}{6}\), then the area of the triangle FGH is | R | \(\frac{3}{4}\) |
(IV) | If \(\Phi = \frac{\pi}{12}\), then the area of the triangle FGH is | S | \(\frac{1}{2\sqrt{3}}\) |
T | \(\frac{3\sqrt{3}}{2}\) |
(I) → (R); (II) → (S); (III) → (Q); (IV) → (P)
(I) → (R); (II) → (T); (III) → (S); (IV) → (P)
(I) → (Q); (II) → (T); (III) → (S); (IV) → (P)
(I) → (Q); (II) → (S); (III) → (Q); (IV) → (P)
Equation of auxiliary circle \(x^2 + y^2 = 4\)
Let F be \((2 cos \theta, 2 sin \theta)\)
E is \(( 2cos\theta , \sqrt{3} sin \theta)\)
Equation of tangent at E \(x \cos{\frac{\theta}{2}}+ y \sin{\frac{\theta}{\sqrt{3}}}=1\)
It cuts x-axis at \((2 sec \theta, 0)\)
Therefore, G is \((2 sec \theta, 0)\)
H is \((2 cos \theta, 0)\) and F\((2 cos \theta, 2 sin \theta)\)
Area of \(\triangle FGH\) is \(\frac{1}{2}\times2sin\theta(2 sec\theta-2cos\theta)\)\(=2 sin\theta(sec\theta-cos\theta)\)
\((I) \quad f\left(\frac{\pi}{4}\right)=1\)
\((II) \quad f\left(\frac{\pi}{3}\right)=\frac{3\sqrt{3}}{2}\)
\((III) \quad f\left(\frac{\pi}{6}\right)=\frac{1}{2\sqrt{3}}\)
\((IV) \quad f\left(\frac{\pi}{12}\right)=2(2-\sqrt{3})\left(\frac{\sqrt{3}-1}{2\sqrt{2}}\right)^2=\frac{(4-2\sqrt{3})(\sqrt{3}-1)^2}{8}=\frac{(\sqrt{3}-1)^4}{8}\)
So, the correct option is (C): (I) → (Q); (II) → (T); (III) → (S); (IV) → (P)
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.
The left and right compartments of a thermally isolated container of length $L$ are separated by a thermally conducting, movable piston of area $A$. The left and right compartments are filled with $\frac{3}{2}$ and 1 moles of an ideal gas, respectively. In the left compartment the piston is attached by a spring with spring constant $k$ and natural length $\frac{2L}{5}$. In thermodynamic equilibrium, the piston is at a distance $\frac{L}{2}$ from the left and right edges of the container as shown in the figure. Under the above conditions, if the pressure in the right compartment is $P = \frac{kL}{A} \alpha$, then the value of $\alpha$ is ____