Consider the discrete-time systems $ T_1 $ and $ T_2 $ defined as follows:
$ [T_1x][n] = x[0] + x[1] + \dots + x[n], $
$ [T_2x][n] = x[0] + \frac{1}{2}x[1] + \dots + \frac{1}{2^n}x[n]. $
Which of the following statements is true?
Which of the following circuits represents a forward biased diode?
In the following circuit, the reading of the ammeter will be: (Take Zener breakdown voltage = 4 V)
The output voltage in the following circuit is (Consider ideal diode case):
The relationship between two variables \( x \) and \( y \) is given by \( x + py + q = 0 \) and is shown in the figure. Find the values of \( p \) and \( q \). Note: The figure shown is representative.
In the given figure, EF and HJ are coded as 30 and 80, respectively. Which one among the given options is most appropriate for the entries marked (i) and (ii)?
An ideal low pass filter has frequency response given by \[ H(j\omega) = \begin{cases} 1, & |\omega| \leq 200\pi \\ 0, & \text{otherwise} \end{cases} \] Let \( h(t) \) be its time domain representation. Then h(0) = _________ (round off to the nearest integer).