At steady state, both MOSFETs are in saturation and the drain currents must match (KCL at the output node).
For the pMOS, the current magnitude is
\[
I_p = \frac{1}{2}\mu_p C_{ox} \left( \frac{W}{L} \right)_p (V_{SG} - |V_{TP}|)^2.
\]
For the nMOS, the drain current is
\[
I_n = \frac{1}{2}\mu_n C_{ox} \left( \frac{W}{L} \right)_n (V_{GS} - V_{TN})^2.
\]
Step 1: Substitute given parameters.
pMOS: \( \mu_p = 40,\ W/L = 5,\ V_{TP} = -1,\ V_{SG} = 4 - V_O \).
nMOS: \( \mu_n = 300,\ W/L = 1,\ V_{TN} = 1,\ V_{GS} = V_O \).
\[
I_p = \frac{1}{2} (40) C_{ox} (5) (4 - V_O - 1)^2
= 100 C_{ox} (3 - V_O)^2.
\]
\[
I_n = \frac{1}{2} (300) C_{ox} (1) (V_O - 1)^2
= 150 C_{ox} (V_O - 1)^2.
\]
Step 2: Apply current equality (magnitude).
\[
I_p = I_n.
\]
\[
100 (3 - V_O)^2 = 150 (V_O - 1)^2.
\]
Divide by 50:
\[
2 (3 - V_O)^2 = 3 (V_O - 1)^2.
\]
Step 3: Solve for $V_O$.
Expand:
\[
2(9 - 6V_O + V_O^2) = 3(V_O^2 - 2V_O + 1).
\]
\[
18 - 12V_O + 2V_O^2 = 3V_O^2 - 6V_O + 3.
\]
Rearrange:
\[
0 = V_O^2 + 6V_O - 15.
\]
Quadratic formula:
\[
V_O = \frac{-6 \pm \sqrt{36 + 60}}{2}
= \frac{-6 \pm \sqrt{96}}{2}
= -3 \pm 2\sqrt{6}.
\]
Only the positive root is valid:
\[
V_O = -3 + 2\sqrt{6}.
\]
Since \(2\sqrt{6} \approx 4.90\):
\[
V_O \approx 1.90\ \text{V}.
\]
Step 4: Conclusion.
\[
V_O \approx 1.9\ \text{V}<2\ \text{V}.
\]
Final Answer: less than 2 V