x2 + y2 – 3x + y = 0
x2 + y2 + x + 3y = 0
x2 + y2 + 2y – 1 = 0
x2 + y2 + x + y = 0
Let \( F_1, F_2 \) \(\text{ be the foci of the hyperbola}\) \[ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1, a > 0, \, b > 0, \] and let \( O \) be the origin. Let \( M \) be an arbitrary point on curve \( C \) and above the X-axis and \( H \) be a point on \( MF_1 \) such that \( MF_2 \perp F_1 F_2, \, M F_1 \perp OH, \, |OH| = \lambda |O F_2| \) with \( \lambda \in (2/5, 3/5) \), then the range of the eccentricity \( e \) is in:
Let the line $\frac{x}{4} + \frac{y}{2} = 1$ meet the x-axis and y-axis at A and B, respectively. M is the midpoint of side AB, and M' is the image of the point M across the line $x + y = 1$. Let the point P lie on the line $x + y = 1$ such that $\Delta ABP$ is an isosceles triangle with $AP = BP$. Then the distance between M' and P is:
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
A temperature difference can generate e.m.f. in some materials. Let $ S $ be the e.m.f. produced per unit temperature difference between the ends of a wire, $ \sigma $ the electrical conductivity and $ \kappa $ the thermal conductivity of the material of the wire. Taking $ M, L, T, I $ and $ K $ as dimensions of mass, length, time, current and temperature, respectively, the dimensional formula of the quantity $ Z = \frac{S^2 \sigma}{\kappa} $ is: