Step 1. Calculate Initial Moment of Inertia and Kinetic Energy:
For the first disc:
\( I_1 = \frac{1}{2}MR^2 = \frac{1}{2} \times 5 \times (2)^2 = 10 \, \text{kg} \cdot \text{m}^2 \)
Initial angular velocity \( \omega = 10 \, \text{rad/s} \). Initial kinetic energy:
\( E_i = \frac{1}{2}I_1 \omega^2 = \frac{1}{2} \times 10 \times (10)^2 = 500 \, \text{J} \)
Step 2. Final Moment of Inertia and Angular Velocity:
When the second disc is placed on top, the combined moment of inertia becomes:
\( I_f = I_1 + I_2 = 10 + 10 = 20 \, \text{kg} \cdot \text{m}^2 \)
Using conservation of angular momentum:
\( I_1 \omega = I_f \omega_f \Rightarrow 10 \times 10 = 20 \times \omega_f \)
\( \omega_f = 5 \, \text{rad/s} \)
Step 3. Calculate Final Kinetic Energy:
\( E_f = \frac{1}{2} I_f \omega_f^2 = \frac{1}{2} \times 20 \times (5)^2 = 250 \, \text{J} \)
Step 4. Energy Dissipated:
Energy dissipated \( \Delta E = E_i - E_f \):
\( \Delta E = 500 - 250 = 250 \, \text{J} \)
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).