Step 1. Calculate Initial Moment of Inertia and Kinetic Energy:
For the first disc:
\( I_1 = \frac{1}{2}MR^2 = \frac{1}{2} \times 5 \times (2)^2 = 10 \, \text{kg} \cdot \text{m}^2 \)
Initial angular velocity \( \omega = 10 \, \text{rad/s} \). Initial kinetic energy:
\( E_i = \frac{1}{2}I_1 \omega^2 = \frac{1}{2} \times 10 \times (10)^2 = 500 \, \text{J} \)
Step 2. Final Moment of Inertia and Angular Velocity:
When the second disc is placed on top, the combined moment of inertia becomes:
\( I_f = I_1 + I_2 = 10 + 10 = 20 \, \text{kg} \cdot \text{m}^2 \)
Using conservation of angular momentum:
\( I_1 \omega = I_f \omega_f \Rightarrow 10 \times 10 = 20 \times \omega_f \)
\( \omega_f = 5 \, \text{rad/s} \)
Step 3. Calculate Final Kinetic Energy:
\( E_f = \frac{1}{2} I_f \omega_f^2 = \frac{1}{2} \times 20 \times (5)^2 = 250 \, \text{J} \)
Step 4. Energy Dissipated:
Energy dissipated \( \Delta E = E_i - E_f \):
\( \Delta E = 500 - 250 = 250 \, \text{J} \)
\[ f(x) = \left\{ \begin{array}{ll} 1 - 2x & \text{if } x < -1 \\ \frac{1}{3}(7 + 2|x|) & \text{if } -1 \leq x \leq 2 \\ \frac{11}{18} (x-4)(x-5) & \text{if } x > 2 \end{array} \right. \]
Electrolysis of 600 mL aqueous solution of NaCl for 5 min changes the pH of the solution to 12. The current in Amperes used for the given electrolysis is ….. (Nearest integer).