Apply Bernoulli equation between points 1 and 2.
\( P_1 + \frac{1}{2} \rho v_1^2 + \rho g h = P_2 + \frac{1}{2} \rho v_2^2 + 0 \)
\( P_0 + \frac{mg}{A} + \rho g \frac{70}{100} = P_0 + \frac{1}{2} \rho v_2^2 \) \( \frac{5000}{0.5} + 10^3 \times 10 \times \frac{70}{100} = \frac{1}{2} \times 10^3 v_2^2 \) \( 10^4 + 10^3 \times 7 = \frac{10^3}{2} v_2^2 \) \( v_2^2 = 16 \) \( v_2 = 4 m/s \)
As the tank area is large \( v_1 \) is negligible compared to \( v_2 \).