Apply Bernoulli equation between points 1 and 2.
\( P_1 + \frac{1}{2} \rho v_1^2 + \rho g h = P_2 + \frac{1}{2} \rho v_2^2 + 0 \)
\( P_0 + \frac{mg}{A} + \rho g \frac{70}{100} = P_0 + \frac{1}{2} \rho v_2^2 \) \( \frac{5000}{0.5} + 10^3 \times 10 \times \frac{70}{100} = \frac{1}{2} \times 10^3 v_2^2 \) \( 10^4 + 10^3 \times 7 = \frac{10^3}{2} v_2^2 \) \( v_2^2 = 16 \) \( v_2 = 4 m/s \)
As the tank area is large \( v_1 \) is negligible compared to \( v_2 \).
Which of the following statements are true?
A. The same Bernoulli's equation is applicable to all the points in the flow field if the flow is irrotational.
B. The value of "Constant in the Bernoulli's equation" is different for different streamlines if the flow is rotational.
C. When a nozzle is fitted at the end of a long pipeline, the discharge increases.
D. The velocity of flow at the nozzle end is more than that in the case of a pipe without a nozzle, the head in both cases being the same.
Choose the most appropriate answer from the options given below:
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: