Apply Bernoulli equation between points 1 and 2.
\( P_1 + \frac{1}{2} \rho v_1^2 + \rho g h = P_2 + \frac{1}{2} \rho v_2^2 + 0 \)
\( P_0 + \frac{mg}{A} + \rho g \frac{70}{100} = P_0 + \frac{1}{2} \rho v_2^2 \) \( \frac{5000}{0.5} + 10^3 \times 10 \times \frac{70}{100} = \frac{1}{2} \times 10^3 v_2^2 \) \( 10^4 + 10^3 \times 7 = \frac{10^3}{2} v_2^2 \) \( v_2^2 = 16 \) \( v_2 = 4 m/s \)
As the tank area is large \( v_1 \) is negligible compared to \( v_2 \).
A cube of side 10 cm is suspended from one end of a fine string of length 27 cm, and a mass of 200 grams is connected to the other end of the string. When the cube is half immersed in water, the system remains in balance. Find the density of the cube.
In a low-speed airplane, a venturimeter with a 1.3:1 area ratio is used for airspeed measurement. The airplane’s maximum speed at sea level is 90 m/s. If the density of air at sea level is 1.225 kg/m³, the maximum pressure difference between the inlet and the throat of the venturimeter is __________ kPa (rounded off to two decimal places).
In a fluid flow, Mach number is an estimate of _________.
If $10 \sin^4 \theta + 15 \cos^4 \theta = 6$, then the value of $\frac{27 \csc^6 \theta + 8 \sec^6 \theta}{16 \sec^8 \theta}$ is:
If the area of the region $\{ (x, y) : |x - 5| \leq y \leq 4\sqrt{x} \}$ is $A$, then $3A$ is equal to
Let $A = \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix}$. If for some $\theta \in (0, \pi)$, $A^2 = A^T$, then the sum of the diagonal elements of the matrix $(A + I)^3 + (A - I)^3 - 6A$ is equal to
Let $A = \{ z \in \mathbb{C} : |z - 2 - i| = 3 \}$, $B = \{ z \in \mathbb{C} : \text{Re}(z - iz) = 2 \}$, and $S = A \cap B$. Then $\sum_{z \in S} |z|^2$ is equal to
Let $C$ be the circle $x^2 + (y - 1)^2 = 2$, $E_1$ and $E_2$ be two ellipses whose centres lie at the origin and major axes lie on the $x$-axis and $y$-axis respectively. Let the straight line $x + y = 3$ touch the curves $C$, $E_1$, and $E_2$ at $P(x_1, y_1)$, $Q(x_2, y_2)$, and $R(x_3, y_3)$ respectively. Given that $P$ is the mid-point of the line segment $QR$ and $PQ = \frac{2\sqrt{2}}{3}$, the value of $9(x_1 y_1 + x_2 y_2 + x_3 y_3)$ is equal to