We are given:
$\sum_{i=1}^{10} X_i - 10A = 2 \implies \sum_{i=1}^{10} X_i = 10A + 2$.
$\sum_{i=1}^{10} X_i - 10B = 40 \implies \sum_{i=1}^{10} X_i = 10B + 40$.
Equating both expressions for $\sum_{i=1}^{10} X_i$, we get:
$10A + 2 = 10B + 40 \implies 10A - 10B = 38 \implies A - B = 3.8$.
Since A and B are integers, $A = 4$ and $B = 2$.
Thus, $B = 2$.
Class | 0 – 15 | 15 – 30 | 30 – 45 | 45 – 60 | 60 – 75 | 75 – 90 |
---|---|---|---|---|---|---|
Frequency | 11 | 8 | 15 | 7 | 10 | 9 |
Variance of the following discrete frequency distribution is:
\[ \begin{array}{|c|c|c|c|c|c|} \hline \text{Class Interval} & 0-2 & 2-4 & 4-6 & 6-8 & 8-10 \\ \hline \text{Frequency (}f_i\text{)} & 2 & 3 & 5 & 3 & 2 \\ \hline \end{array} \]