To solve the given problem, we need to decipher the information about the 10 observations \(x_1, x_2, \ldots, x_{10}\) in terms of their mean and variance, and how they relate to \(\alpha\) and \(\beta\).
Hence, the correct answer is: 2.
We are given:
$\sum_{i=1}^{10} X_i - 10A = 2 \implies \sum_{i=1}^{10} X_i = 10A + 2$.
$\sum_{i=1}^{10} X_i - 10B = 40 \implies \sum_{i=1}^{10} X_i = 10B + 40$.
Equating both expressions for $\sum_{i=1}^{10} X_i$, we get:
$10A + 2 = 10B + 40 \implies 10A - 10B = 38 \implies A - B = 3.8$.
Since A and B are integers, $A = 4$ and $B = 2$.
Thus, $B = 2$.
Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.