Question:

Compute the indicated products \((i)\begin{bmatrix}a&b\\-b&a\end{bmatrix}\begin{bmatrix}a&-b\\b&a\end{bmatrix}\)\((ii)\begin{bmatrix}1\\2\\3\end{bmatrix}\begin{bmatrix}2&3&4\end{bmatrix}\)\((iii)\begin{bmatrix}1&-2\\2&3\end{bmatrix}\begin{bmatrix}1&2&3\\2&3&1\end{bmatrix}\)\((iv)\begin{bmatrix}2&3&4\\ 3&4&5\\ 4&5&6\end{bmatrix}\begin{bmatrix}1&-3&5\\ 0&2&4\\ 3&0&5\end{bmatrix}\)
\((v)\begin{bmatrix}2&1\\3&2\\-1&1\end{bmatrix}\begin{bmatrix}2&-3\\1&0\\3&1\end{bmatrix}\)\((vi)\begin{bmatrix}3&-1&3\\-1&0&2\end{bmatrix}\begin{bmatrix}2&-3\\1&0\\3&1\end{bmatrix}\)

Updated On: Sep 4, 2023
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

\((i)\begin{bmatrix}a&b\\-b&a\end{bmatrix}\begin{bmatrix}a&-b\\b&a\end{bmatrix}\)
\(=\begin{bmatrix}a(a)+b(b)& a(-b)+b(a)\\ -b(a)+a(b)& -b(-b)+a(a)\end{bmatrix}\)
\(=\begin{bmatrix}a^2+b^2& -ab+ab\\ -ab+ab& b^2+a^2\end{bmatrix}=\begin{bmatrix}a^2+b^2& 0\\ 0& a^2+b^2\end{bmatrix}\)
\((ii)\begin{bmatrix}1\\2\\3\end{bmatrix}\begin{bmatrix}2&3&4\end{bmatrix}\)
\(=\begin{bmatrix}1(2)& 1(3)& 1(4)\\ 2(2)& 2(3)& 2(4)\\ 3(2)& 3(3)& 3(4)\end{bmatrix}\)
\(=\begin{bmatrix}2&3&4\\ 4&6&8\\ 6&9&12\end{bmatrix}\)
\((iii)\begin{bmatrix}1&-2\\2&3\end{bmatrix}\begin{bmatrix}1&2&3\\2&3&1\end{bmatrix}\)
\(=\begin{bmatrix}1(1)-2(2)& 1(2)-2(3)& 1(3)-2(1)\\ 2(1)+3(2)& 2(2)+3(3)& 2(3)+3(1)\end{bmatrix}\)
\(=\begin{bmatrix}1-4& 2-6& 3-2\\ 2+6& 4+9& 6+3\end{bmatrix}=\begin{bmatrix}-3&-4&1\\ 8&13&9\end{bmatrix}\)
\((iv)\begin{bmatrix}2&3&4\\ 3&4&5\\ 4&5&6\end{bmatrix}\begin{bmatrix}1&-3&5\\ 0&2&4\\ 3&0&5\end{bmatrix}\)
\(=\begin{bmatrix}2(1)+3(0)+4(3)& 2(-3)+3(2)+4(0)& 2(5)+3(4)+4(5)\\ 3(1)+4(0)+5(3)& 3(-3)+4(2)+5(0)& 3(5)+4(4)+5(5)\\4(1)+5(0)+6(3)& 4(-3)+5(2)+6(0)& 4(5)+5(4)+6(5)\end{bmatrix}\)
\(=\begin{bmatrix}2+0+12& -6+6+0& 10+12+20\\ 3+0+15& -9+8+0& 15+16+25\\ 4+0+18& -12+10+0& 20+20+30\end{bmatrix}\)
\(=\begin{bmatrix}14& 0& 42\\ 18& -1& 56\\ 22& -2& 70\end{bmatrix}\)
\((v)\begin{bmatrix}2&1\\3&2\\-1&1\end{bmatrix}\begin{bmatrix}2&-3\\1&0\\3&1\end{bmatrix}\)
\(=\begin{bmatrix} 2(1)+1(-1)& 2(0)+1(2)& 2(1)+1(1)\\ 3(1)+2(-1)& 3(0)+2(2)& 3(1)+2(1)\\ -1(1)+1(-1)& -1(0)+1(2)& -1(1)+1(1)\end{bmatrix}\)
\(=\begin{bmatrix}2-1& 0+2& 2+1\\ 3-2& 0+4& 3+2\\ -1-1& 0+2& -1+1\end{bmatrix}\)
\(=\begin{bmatrix}1&2&3\\ 1&4&5\\ -2&2&0\end{bmatrix}\)
\((vi)\begin{bmatrix}3&-1&3\\-1&0&2\end{bmatrix}\begin{bmatrix}2&-3\\1&0\\3&1\end{bmatrix}\)
\(=\begin{bmatrix}3(2)-1(1)+3(3)& 3(-3)-1(0)+3(1)\\ -1(2)+0(1)+2(3)& -1(-3)+0(0)+2(1)\end{bmatrix}\)
\(=\begin{bmatrix}6-1+9& -9-0+3\\ -2+0+6& 3+0+2\end{bmatrix}=\begin{bmatrix}14& -6\\ 4& 5\end{bmatrix}\)
Was this answer helpful?
0
0