The balanced combustion reaction of glucose is:
\[\text{C}_6\text{H}_{12}\text{O}_6 + 6\text{O}_2 \rightarrow 6\text{CO}_2 + 6\text{H}_2\text{O}.\]
From the equation:
1 mol of glucose requires 6 mol of $\text{O}_2$.
Molar mass of glucose = $180 \, \text{g/mol}$.
Molar mass of $\text{O}_2 = 32 \, \text{g/mol}$.
Number of moles of glucose in $900 \, \text{g}$:
\[n = \frac{900}{180} = 5 \, \text{mol}.\]
Oxygen required:
\[\text{Mass of } \text{O}_2 = 5 \cdot 6 \cdot 32 = 960 \, \text{g}.\]
Final Answer:
$960 \, \text{g}$.
Let $ f(x) = \begin{cases} (1+ax)^{1/x} & , x<0 \\1+b & , x = 0 \\\frac{(x+4)^{1/2} - 2}{(x+c)^{1/3} - 2} & , x>0 \end{cases} $ be continuous at x = 0. Then $ e^a bc $ is equal to
Total number of nucleophiles from the following is: \(\text{NH}_3, PhSH, (H_3C_2S)_2, H_2C = CH_2, OH−, H_3O+, (CH_3)_2CO, NCH_3\)