C₆H₁₂O₆ + 6O₂ → 6CO₂ + 6H₂O
Given Mass of glucose = 900 gram
Molar mass of glucose = 180 gm/mole
So, moles of glucose:
moles of glucose ⇒ 900/180 = 5
1 mole of glucose requires 6 moles of oxygen gas.
So, 5 moles of glucose will require 30 moles of oxygen gas.
Moles of oxygen gas = 30
Molar mass of oxygen gas = 32 g/mole
So, mass of oxygen gas required:
mass of oxygen gas required ⇒ 30 × 32 = 960 gram
The balanced combustion reaction of glucose is:
\[\text{C}_6\text{H}_{12}\text{O}_6 + 6\text{O}_2 \rightarrow 6\text{CO}_2 + 6\text{H}_2\text{O}.\]
From the equation:
1 mol of glucose requires 6 mol of $\text{O}_2$.
Molar mass of glucose = $180 \, \text{g/mol}$.
Molar mass of $\text{O}_2 = 32 \, \text{g/mol}$.
Number of moles of glucose in $900 \, \text{g}$:
\[n = \frac{900}{180} = 5 \, \text{mol}.\]
Oxygen required:
\[\text{Mass of } \text{O}_2 = 5 \cdot 6 \cdot 32 = 960 \, \text{g}.\]
Final Answer:
$960 \, \text{g}$.
A parallel beam of light travelling in air (refractive index \(1.0\)) is incident on a convex spherical glass surface of radius of curvature \(50 \, \text{cm}\). Refractive index of glass is \(1.5\). The rays converge to a point at a distance \(x \, \text{cm}\) from the centre of curvature of the spherical surface. The value of \(x\) is ___________.
\(X\) is the number of geometrical isomers exhibited by \([\mathrm{Pt(NH_3)(H_2O)BrCl}]\).
\(Y\) is the number of optically inactive isomer(s) exhibited by \([\mathrm{CrCl_2(ox)_2}]^{3-}\).
\(Z\) is the number of geometrical isomers exhibited by \([\mathrm{Co(NH_3)_3(NO_2)_3}]\). Find the value of \(X + Y + Z\). }
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
