Classify the following as linear, quadratic and cubic polynomials:
(i) x 2 + x (ii) x – x 3 (iii) y + y 2 + 4 (iv) 1 + x (v) 3t (vi) r 2 (vii) 7x 3
(i) x 2 + x is a quadratic polynomial as its degree is 2.
(ii) x – x 3 is a cubic polynomial as its degree is 3.
(iii) y + y 2 + 4 is a quadratic polynomial as its degree is 2.
(iv) 1 + x is a linear polynomial as its degree is 1.
(v) 1 + x is a linear polynomial as its degree is 1.
(vi) r 2 is a quadratic polynomial as its degree is 2.
(vii) 7x 3 is a cubic polynomial as its degree is 3.
Write the degree of each of the following polynomials:
(i) 5x 3 + 4x 2 + 7x (ii) 4 – y 2 (iii) 5t – √7 (iv) 3.
Write the coefficients of x 2 in each of the following:
(i) 2 + x 2 + x
(ii) 2 – x 2 + x 3
(iii) \(\frac{π }{ 2}\) x2 + x
(iv) √2 x -1
Which of the following expressions are polynomials in one variable and which are not? State reasons for your answer.
(i) 4x 2 – 3x + 7
(ii) y 2 + √2
(iii) 3 √t + t√2
(iv) y +\(\frac{ 2 }{ y} \)
(v) x 10 + y 3 + t 50

Section A | Section B | ||
|---|---|---|---|
Marks | Frequency | Marks | Frequency |
0 − 10 | 3 | 0 − 10 | 5 |
10 − 20 | 9 | 10 − 20 | 19 |
20 − 30 | 17 | 20 − 30 | 15 |
30 − 40 | 12 | 30 − 40 | 10 |
40 − 50 | 9 | 40 − 50 | 1 |
Represent the marks of the students of both the sections on the same graph by two frequency polygons. From the two polygons compare the performance of the two sections.
(i) The kind of person the doctor is (money, possessions)
(ii) The kind of person he wants to be (appearance, ambition)