Given that,
A.P. \(-3, -\frac 12, 2, .......\)
First term \(a = −3\)
Common difference, \(d = a_2 − a_1\)
\(d = -\frac 12 - (-3)\)
\(d = -\frac 12 + 3\)
\(d = \frac {-1+6}{2}\)
\(d = \frac 52\)
We know,
\(a_n = a + (n-1)d\)
\(a_{11} = -3 + (11-1)(\frac 52)\)
\(a_{11} = -3 + 10 \times \frac 52\)
\(a_{11} = -3 + 25\)
\(a_{11}= 22\)
Hence, the correct option is (B): \(22\)
The common difference of the A.P.: $3,\,3+\sqrt{2},\,3+2\sqrt{2},\,3+3\sqrt{2},\,\ldots$ will be:
Let $a_1, a_2, a_3, \ldots$ be an AP If $a_7=3$, the product $a_1 a_4$ is minimum and the sum of its first $n$ terms is zero, then $n !-4 a_{n(n+2)}$ is equal to :
‘दीवार खड़ी करना’ मुहावरे का वाक्य में इस प्रकार प्रयोग करें कि अर्थ स्पष्ट हो जाए।
Select from the following a statement which is not true about the burning of magnesium ribbon in air:
Analyze the significant changes in printing technology during 19th century in the world.
निम्नलिखित विषय पर संकेत बिंदुओं के आधार पर लगभग 120 शब्दों में एक अनुच्छेद लिखिए |
डिजिटल इंडिया
संकेत बिंदु -
डिजिटल इंडिया क्या है
डिजिटल होने के लाभ
सरकार द्वारा उठाए गए कदम