Choose the correct answer.
Let A=\(\begin{bmatrix}1&sin\theta&1\\-sin\theta&1&sin\theta\\-1&-sin\theta&1\end{bmatrix}\),\(where 0≤\theta≤2\pi,then\)
\(Det(A)=0\)
\(Det (A)∈(2,∞)\)
\(Det(A)∈(2,4)\)
\(Det(A)∈[2,4]\)
A=\(\begin{bmatrix}1&sin\theta&1\\-sin\theta&1&sin\theta\\-1&-sin\theta&1\end{bmatrix}\)
\(∴|A|=1\)\((1+sin^{2}θ)-sinθ(-sinθ+sinθ)+1(sin^{2}θ+1)\)
\(=1+sin^{2}θ+sin^{2}θ+1\)
\(=2+2sin^{2}θ\)
\(=2(1+sin^{2}θ)\)
Now,
\(0≤\theta≤2\pi\)
\(⇒0≤sin\theta≤1\)
\(⇒0≤sin2\theta≤1\)
\(⇒1≤1+sin2\theta≤2\)
\(⇒1≤1+sin2\theta≤2\)
\(∴Det(A)∈[2,4]\)
The correct answer is D.
Let I be the identity matrix of order 3 × 3 and for the matrix $ A = \begin{pmatrix} \lambda & 2 & 3 \\ 4 & 5 & 6 \\ 7 & -1 & 2 \end{pmatrix} $, $ |A| = -1 $. Let B be the inverse of the matrix $ \text{adj}(A \cdot \text{adj}(A^2)) $. Then $ |(\lambda B + I)| $ is equal to _______
Let $A = \{ z \in \mathbb{C} : |z - 2 - i| = 3 \}$, $B = \{ z \in \mathbb{C} : \text{Re}(z - iz) = 2 \}$, and $S = A \cap B$. Then $\sum_{z \in S} |z|^2$ is equal to
If $ y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\27 & 28 & 27 \\1 & 1 & 1 \end{vmatrix} $, $ x \in \mathbb{R} $, then $ \frac{d^2y}{dx^2} + y $ is equal to
The correct IUPAC name of \([ \text{Pt}(\text{NH}_3)_2\text{Cl}_2 ]^{2+} \) is: