Choose the correct answer.
Let A=\(\begin{bmatrix}1&sin\theta&1\\-sin\theta&1&sin\theta\\-1&-sin\theta&1\end{bmatrix}\),\(where 0≤\theta≤2\pi,then\)
\(Det(A)=0\)
\(Det (A)∈(2,∞)\)
\(Det(A)∈(2,4)\)
\(Det(A)∈[2,4]\)
A=\(\begin{bmatrix}1&sin\theta&1\\-sin\theta&1&sin\theta\\-1&-sin\theta&1\end{bmatrix}\)
\(∴|A|=1\)\((1+sin^{2}θ)-sinθ(-sinθ+sinθ)+1(sin^{2}θ+1)\)
\(=1+sin^{2}θ+sin^{2}θ+1\)
\(=2+2sin^{2}θ\)
\(=2(1+sin^{2}θ)\)
Now,
\(0≤\theta≤2\pi\)
\(⇒0≤sin\theta≤1\)
\(⇒0≤sin2\theta≤1\)
\(⇒1≤1+sin2\theta≤2\)
\(⇒1≤1+sin2\theta≤2\)
\(∴Det(A)∈[2,4]\)
The correct answer is D.
If \(\begin{vmatrix} 2x & 3 \\ x & -8 \\ \end{vmatrix} = 0\), then the value of \(x\) is:
Let I be the identity matrix of order 3 × 3 and for the matrix $ A = \begin{pmatrix} \lambda & 2 & 3 \\ 4 & 5 & 6 \\ 7 & -1 & 2 \end{pmatrix} $, $ |A| = -1 $. Let B be the inverse of the matrix $ \text{adj}(A \cdot \text{adj}(A^2)) $. Then $ |(\lambda B + I)| $ is equal to _______
Reactant ‘A’ underwent a decomposition reaction. The concentration of ‘A’ was measured periodically and recorded in the table given below:
Based on the above data, predict the order of the reaction and write the expression for the rate law.
Balance Sheet of Atharv and Anmol as at 31st March, 2024
| Liabilities | Amount (₹) | Assets | Amount (₹) |
|---|---|---|---|
| Capitals: | Fixed Assets | 14,00,000 | |
| Atharv | 8,00,000 | Stock | 4,90,000 |
| Anmol | 4,00,000 | Debtors | 5,60,000 |
| General Reserve | 3,50,000 | Cash | 10,000 |
| Creditors | 9,10,000 | ||
| Total | 24,60,000 | Total | 24,60,000 |