We are asked to find the metal whose chloride is soluble in organic solvents.
The solubility of metal chlorides in organic solvents varies depending on the metal. Typically, metal chlorides like those of alkali and alkaline earth metals have different solubility behaviors in organic solvents. Among the options:
Therefore, the correct answer is: BeCl2.
The chloride of Beryllium (BeCl2) is soluble in organic solvents.
The density of \(\beta\)-Fe is 7.6 g/cm\(^3\). It crystallizes in a cubic lattice with \( a = 290 \) pm.
What is the value of \( Z \)? (\( Fe = 56 \) g/mol, \( N_A = 6.022 \times 10^{23} \) mol\(^{-1}\))
Arrange the following in the increasing order of number of unpaired electrons present in the central metal ion:
I. \([MnCl_6]^{4-}\)
II. \([FeF_6]^{3-}\)
III. \([Mn(CN)_6]^{3-}\)
IV. \([Fe(CN)_6]^{3-}\)
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: