Question:

The density of β\beta-Fe is 7.6 g/cm3^3. It crystallizes in a cubic lattice with a=290 a = 290 pm. 
What is the value of Z Z ? (Fe=56 Fe = 56 g/mol, NA=6.022×1023 N_A = 6.022 \times 10^{23} mol1^{-1})

Show Hint

- The number of atoms per unit cell Z Z helps determine the crystal structure: - Z=1 Z = 1 for simple cubic, - Z=2 Z = 2 for BCC (body-centered cubic), - Z=4 Z = 4 for FCC (face-centered cubic).
Updated On: Mar 22, 2025
  • 2 2
  • 1 1
  • 4 4
  • 6 6
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Step 1: Use the density formula for a unit cell Density=ZMNAa3 {Density} = \frac{Z \cdot M}{N_A \cdot a^3} Where: - Z Z = number of atoms per unit cell - M M = molar mass of Fe = 56 g/mol - NA N_A = Avogadro’s number = 6.022×1023 6.022 \times 10^{23} - a=290 a = 290 pm = 290×1010 290 \times 10^{-10} cm - Given density ρ=7.6 \rho = 7.6 g/cm³ 
Step 2: Calculate the unit cell volume a3=(290×1010)3=2.44×1023cm3 a^3 = (290 \times 10^{-10})^3 = 2.44 \times 10^{-23} { cm}^3 Step 3: Solve for Z Z Z=ρNAa3M Z = \frac{\rho \cdot N_A \cdot a^3}{M} Z=(7.6)×(6.022×1023)×(2.44×1023)56 Z = \frac{(7.6) \times (6.022 \times 10^{23}) \times (2.44 \times 10^{-23})}{56} Z=1.116×10156=2 Z = \frac{1.116 \times 10^1}{56} = 2 Thus, Z=2 Z = 2 , indicating a body-centered cubic (BCC) structure.

Was this answer helpful?
0
0