For this A.P., \(a = 11\) and \(d = a_2 − a_1 = 8 − 11 = −3\)
Let \(−150\) be the nth term of this A.P.
We know that,
\(a_n = a + (n-1)d\)
\(-150 = 11 + (n-1)(-3)\)
\(-150 = 11-3n+3\)
\(-164 = -3n\)
\(n = \frac {164}{3}\)
Clearly, n is not an integer.
Therefore, \(−150\) is not a term of this A.P.
The common difference of the A.P.: $3,\,3+\sqrt{2},\,3+2\sqrt{2},\,3+3\sqrt{2},\,\ldots$ will be:
Let $a_1, a_2, a_3, \ldots$ be an AP If $a_7=3$, the product $a_1 a_4$ is minimum and the sum of its first $n$ terms is zero, then $n !-4 a_{n(n+2)}$ is equal to :
किसी खेल का आँखों देखा वर्णन...
संकेत बिंदु – खेल का वातावरण • लोगों में उत्साह • अंतिम चरण में पासा पलटा
‘दीवार खड़ी करना’ मुहावरे का वाक्य में इस प्रकार प्रयोग करें कि अर्थ स्पष्ट हो जाए।
Select from the following a statement which is not true about the burning of magnesium ribbon in air:
Analyze the significant changes in printing technology during 19th century in the world.