1. Continuity at \( x = 1 \): \[ f(1^-) = \lim_{x \to 1^-} f(x) = (1)^2 + 1 = 2, \] \[ f(1^+) = \lim_{x \to 1^+} f(x) = 3 - 1 = 2. \] Thus, \( f(1^-) = f(1^+) = f(1) = 2 \), so \( f(x) \) is continuous at \( x = 1 \).
2. Differentiability at \( x = 1 \): Find the left-hand derivative: \[ f'(x) = \frac{d}{dx} (x^2 + 1) = 2x, \quad f'(1^-) = 2(1) = 2. \] Find the right-hand derivative: \[ f'(x) = \frac{d}{dx} (3 - x) = -1, \quad f'(1^+) = -1. \] Since \( f'(1^-) \neq f'(1^+) \), the function is not differentiable at \( x = 1 \).
Final Answer: \( \boxed{{Not differentiable at } x = 1} \)
The respective values of \( |\vec{a}| \) and} \( |\vec{b}| \), if given \[ (\vec{a} - \vec{b}) \cdot (\vec{a} + \vec{b}) = 512 \quad \text{and} \quad |\vec{a}| = 3 |\vec{b}|, \] are:
From the following information, prepare a Reconciliation Statement:
From the following cost information, prepare a cost sheet presenting the total cost and cost per unit of electricity generated.