Step 1 (Quantization of charge). Electric charge on any isolated body is an integer multiple of the elementary charge \(e\) \((e=1.6\times 10^{-19}\,\text{C})\). If a body has an excess of \(N\) electrons, its charge is \(Q=-Ne\).
Step 2 (Use magnitude for counting). The negative sign in \(Q=-3.2~\text{C}\) indicates extra electrons; the count is \(N=\dfrac{|Q|}{e}\).
Step 3 (Compute).
\(N=\dfrac{3.2}{1.6\times 10^{-19}}=\left(\dfrac{3.2}{1.6}\right)\times 10^{19}=2\times 10^{19}\).
(Using \(e=1.602\times 10^{-19}\,\text{C}\) gives \(N\approx 1.997\times 10^{19}\), which rounds to \(2\times 10^{19}\)).
\(\boxed{N=2\times 10^{19}\ \text{excess electrons}}\)