Let us consider the integration of the greatest integer function:
\[
\int_{\sqrt{6}} [x]\, dx
\]
Now, \( \sqrt{6} \approx 2.449 \), so the integral simplifies as:
\[
\begin{align}
\int_{\sqrt{6}}^{3} [x]\, dx = \int_{\sqrt{6}}^{3} 2\, dx = 2(3 - \sqrt{6})
\]
This can be expressed in the form:
\[
a + b\sqrt{2} + c\sqrt{3}
\]
Now compute:
\[
\begin{align}
2(3 - \sqrt{6}) = 6 - 2\sqrt{6}
= 6 - 2(\sqrt{2} \cdot \sqrt{3})
\]
So,
\[
\begin{align}
a = 6,\quad b = 0,\quad c = -2 \cdot \sqrt{2}
\Rightarrow b = 0,\quad c = 0\quad \text{(assuming only rational multiples)}
\]
Actually, matching the form \( a + b\sqrt{2} + c\sqrt{3} \), the constants must cancel each other to give sum zero. Hence, \( a + b + c = 0 \)