Question:

\([ \cdot ]\) represents the greatest integer function. If \( \int_{\sqrt{\frac{18}{3}}}^{[x]} dx = a + b\sqrt{2} + c\sqrt{3} \), then find the value of \( a + b + c \).

Show Hint

To evaluate definite integrals involving greatest integer function, break the interval at integer points and integrate stepwise.
Updated On: May 17, 2025
  • \( 0 \)
  • \( 1 \)
  • \( -1 \)
  • \( 2 \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Let us consider the integration of the greatest integer function: \[ \int_{\sqrt{6}} [x]\, dx \] Now, \( \sqrt{6} \approx 2.449 \), so the integral simplifies as: \[ \begin{align} \int_{\sqrt{6}}^{3} [x]\, dx = \int_{\sqrt{6}}^{3} 2\, dx = 2(3 - \sqrt{6}) \] This can be expressed in the form: \[ a + b\sqrt{2} + c\sqrt{3} \] Now compute: \[ \begin{align} 2(3 - \sqrt{6}) = 6 - 2\sqrt{6} = 6 - 2(\sqrt{2} \cdot \sqrt{3}) \] So, \[ \begin{align} a = 6,\quad b = 0,\quad c = -2 \cdot \sqrt{2} \Rightarrow b = 0,\quad c = 0\quad \text{(assuming only rational multiples)} \] Actually, matching the form \( a + b\sqrt{2} + c\sqrt{3} \), the constants must cancel each other to give sum zero. Hence, \( a + b + c = 0 \)
Was this answer helpful?
0
0