Step 1: Apply Raoult’s Law.
\[
\frac{P}{P^\circ} = X_{solvent}
\]
Given: $\frac{P}{P^\circ} = 0.8$
Thus, $X_{solvent} = 0.8$
Step 2: Relation between mole fractions.
\[
X_{solvent} = \frac{n_{solvent}}{n_{solvent} + n_{solute}} = 0.8
\]
Step 3: Calculate moles of solvent.
Molar mass of octane = $114 \, g mol^{-1}$
Mass of octane = $114 \, g$
\[
n_{solvent} = \frac{114}{114} = 1 \, mol
\]
Step 4: Substitute values.
\[
\frac{1}{1 + n_{solute}} = 0.8
\]
\[
1 = 0.8 (1 + n_{solute})
\]
\[
1 = 0.8 + 0.8n_{solute}
\]
\[
0.2 = 0.8n_{solute}
\]
\[
n_{solute} = 0.25 \, mol
\]
Step 5: Calculate mass of solute.
Molar mass = $40 \, g mol^{-1}$
\[
\text{Mass} = n \times M = 0.25 \times 40 = 10 \, g
\]
Conclusion:
The required mass of solute is:
\[
\boxed{10 \, g}
\]