Electrical conductivity (\(\sigma\)) is related to the charge carrier density (\(n\)), the elementary charge (\(e\)), and the charge carrier mobility (\(\mu\)) by the formula:
$$ \sigma = n e \mu $$
Given:
Electron density \(n = 8.
5 \times 10^{28}\) m\(^{-3}\)
Electron mobility \(\mu = 0.
0035\) m\(^2\)/Vs
Elementary charge \(e = (1)602 \times 10^{-19}\) C
Substitute the values:
$$ \sigma = (8.
5 \times 10^{28} \, \text{m}^{-3}) \times ((1)602 \times 10^{-19} \, \text{C}) \times (0.
0035 \, \text{m}^2/\text{Vs}) $$
The unit C/(Vs) simplifies to S (Siemens).
The unit m\(^{-3} \cdot m^2\) = m\(^{-1}\).
So the final unit is S/m.
$$ \sigma = (8.
5 \times (1)602 \times 0.
0035) \times 10^{(28 - 19)} \, \text{S/m} $$
$$ \sigma = (1(3)617 \times 0.
0035) \times 10^9 \, \text{S/m} $$
$$ \sigma \approx 0.
04766 \times 10^9 \, \text{S/m} $$
$$ \sigma \approx (4)766 \times 10^7 \, \text{S/m} $$
This matches option (1).