The number of dopant atoms per silicon atom is \( \frac{1}{5 \times 10^7} \). The number of holes created in the specimen per cubic meter is the number of dopant atoms per cubic meter, which is:
\[
n_{\text{holes}} = \left( \frac{1}{5 \times 10^7} \right) \times (5 \times 10^{28}) = 10^{21} \, \text{holes m}^{-3}
\]
To find the number of holes per cubic centimeter, we convert from cubic meters to cubic centimeters. Since \( 1 \, \text{m}^3 = 10^6 \, \text{cm}^3 \):
\[
n_{\text{holes}} = \frac{10^{21}}{10^6} = 10^{15} \, \text{holes cm}^{-3}
\]
Thus, the number of holes created per cubic centimeter due to doping is \( 10^{15} \, \text{holes cm}^{-3} \).
An example of a dopant for p-type semiconductors is **Boron**.