We start by solving for \( y \) in terms of \( x \):
\[
\frac{y^2}{4} = 1 - \frac{x^2}{9} \quad \Rightarrow \quad y^2 = 4 \left( 1 - \frac{x^2}{9} \right) \quad \Rightarrow \quad y = \pm 2 \sqrt{1 - \frac{x^2}{9}}
\]
The area under the curve from \( x = -3 \) to \( x = 3 \) is given by the integral:
\[
A = 2 \int_{-3}^{3} 2 \sqrt{1 - \frac{x^2}{9}} \, dx
\]
Using the substitution \( x = 3 \sin(\theta), \, dx = 3 \cos(\theta) \, d\theta \), we get:
\[
A = 36 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^2(\theta) \, d\theta
\]
Using \( \cos^2(\theta) = \frac{1 + \cos(2\theta)}{2} \), the integral becomes:
\[
A = 36 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1 + \cos(2\theta)}{2} \, d\theta
\]
After solving, we get:
\[
A = 18\pi
\]