The velocity of object \( P \) just before the collision is given as:
\[ v_P = \sqrt{2gl} \]
Substituting the given values:
\[ v_P = 2 \, \text{m/s} \]
Since the collision is elastic and the masses of \( P \) and \( Q \) are equal, the following conditions apply:
Reasoning
Conclusion
After the collision:
\[ v_P = 0 \quad \text{and} \quad v_Q = 2 \, \text{m/s} \]
Therefore, the correct answer is:
\[ \boxed{2 \, \text{m/s}} \]
A molecule with the formula $ \text{A} \text{X}_2 \text{Y}_2 $ has all it's elements from p-block. Element A is rarest, monotomic, non-radioactive from its group and has the lowest ionization energy value among X and Y. Elements X and Y have first and second highest electronegativity values respectively among all the known elements. The shape of the molecule is:
A transition metal (M) among Mn, Cr, Co, and Fe has the highest standard electrode potential $ M^{n}/M^{n+1} $. It forms a metal complex of the type $[M \text{CN}]^{n+}$. The number of electrons present in the $ e $-orbital of the complex is ... ...
Consider the following electrochemical cell at standard condition. $$ \text{Au(s) | QH}_2\text{ | QH}_X(0.01 M) \, \text{| Ag(1M) | Ag(s) } \, E_{\text{cell}} = +0.4V $$ The couple QH/Q represents quinhydrone electrode, the half cell reaction is given below: $$ \text{QH}_2 \rightarrow \text{Q} + 2e^- + 2H^+ \, E^\circ_{\text{QH}/\text{Q}} = +0.7V $$
0.1 mol of the following given antiviral compound (P) will weigh .........x $ 10^{-1} $ g.
Consider the following equilibrium, $$ \text{CO(g)} + \text{H}_2\text{(g)} \rightleftharpoons \text{CH}_3\text{OH(g)} $$ 0.1 mol of CO along with a catalyst is present in a 2 dm$^3$ flask maintained at 500 K. Hydrogen is introduced into the flask until the pressure is 5 bar and 0.04 mol of CH$_3$OH is formed. The $ K_p $ is ...... x $ 10^7 $ (nearest integer).
Given: $ R = 0.08 \, \text{dm}^3 \, \text{bar} \, \text{K}^{-1} \, \text{mol}^{-1} $
Assume only methanol is formed as the product and the system follows ideal gas behavior.
Kinematics is a branch of physics that deals with the study of motion, without considering the forces that cause the motion. It is concerned with the position, velocity, and acceleration of objects, as well as the time it takes for them to move from one point to another.
In kinematics, the motion of an object is represented using mathematical equations and graphs. The most common quantities used in kinematics are displacement, velocity, acceleration, and time.
Displacement refers to the change in position of an object, and it is represented by the symbol Δx. Velocity is the rate at which an object's position changes over time, and it is represented by the symbol v. Acceleration is the rate at which an object's velocity changes over time, and it is represented by the symbol a.
Also Read: Kinematics Formula
By analyzing the relationships between these quantities, kinematics can be used to predict the motion of objects in different situations. For example, kinematics can be used to calculate the maximum height reached by a projectile, the distance traveled by a car during a given time, or the time it takes for a rollercoaster to complete a loop.
Kinematics is used in many areas of physics, including mechanics, astrophysics, and robotics. It is also used in engineering, where it is used to design and optimize the motion of machines and vehicles.