Let the vertices of the triangle be \( A(x_1, y_1, z_1) \), \( B(x_2, y_2, z_2) \), \( C(x_3, y_3, z_3) \). The midpoints are:
\[
M_1 = \left(\frac{x_2 + x_3}{2}, \frac{y_2 + y_3}{2}, \frac{z_2 + z_3}{2}\right), \quad M_2 = \left(\frac{x_1 + x_3}{2}, \frac{y_1 + y_3}{2}, \frac{z_1 + z_3}{2}\right),
\]
\[
M_3 = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}, \frac{z_1 + z_2}{2}\right).
\]
Equating midpoints:
\[
(1, 5, -1) = \left(\frac{x_2 + x_3}{2}, \frac{y_2 + y_3}{2}, \frac{z_2 + z_3}{2}\right), \quad \dots
\]
Solve for \( x_1, y_1, z_1, x_2, y_2, z_2, x_3, y_3, z_3 \).