Let $\mathbb{R}$ denote the set of all real numbers. Let $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to (0,4)$ be functions defined by
$$
f(x) = \log_e (x^2 + 2x + 4), \quad \text{and} \quad g(x) = \frac{4}{1 + e^{-2x}}.
$$
Define the composite function $f \circ g^{-1}$ by $(f \circ g^{-1})(x) = f(g^{-1}(x))$, where $g^{-1}$ is the inverse of the function $g$. Then the value of the derivative of the composite function $f \circ g^{-1}$ at $x=2$ is _____.