Question:

ax/2axaxdx is equal to

Updated On: Apr 26, 2024
  • (A) 1logasin1(ax)+c
  • (B) 1logatan1(ax)+c
  • (C) 2axax+c
  • (D) log(ax1)+c
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Explanation:
Let I=dx/2axaxdx=ax1a2xdxLet ax=tdxlogadx=dt=dt1t21loga=1logasin1(t)+c=1logasin1(ax)+c
Was this answer helpful?
0
0

Top Questions on Fundamental Theorem of Calculus

View More Questions