The potential at the center of a half-ring is given by:
\( V = \frac{KQ}{R} \)
where:
Substituting:
\( V = \frac{K \lambda \pi R}{R} \)
\( V = K \lambda \pi \)
Given:
\( V = 9 \times 10^9 \cdot 4 \times 10^{-9} \cdot \pi \)
\( V = 36\pi \, \text{V} \)
Thus, \( x = 36 \).
Final Answer: \( x = 36 \).
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is:
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to: