The potential at the center of a half-ring is given by:
\( V = \frac{KQ}{R} \)
where:
Substituting:
\( V = \frac{K \lambda \pi R}{R} \)
\( V = K \lambda \pi \)
Given:
\( V = 9 \times 10^9 \cdot 4 \times 10^{-9} \cdot \pi \)
\( V = 36\pi \, \text{V} \)
Thus, \( x = 36 \).
Final Answer: \( x = 36 \).
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: