The potential at the center of a half-ring is given by:
\( V = \frac{KQ}{R} \)
where:
Substituting:
\( V = \frac{K \lambda \pi R}{R} \)
\( V = K \lambda \pi \)
Given:
\( V = 9 \times 10^9 \cdot 4 \times 10^{-9} \cdot \pi \)
\( V = 36\pi \, \text{V} \)
Thus, \( x = 36 \).
Final Answer: \( x = 36 \).
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: