Step 1: Compare with the Arrhenius equation.
Arrhenius equation for a first-order reaction:
\[
\log \left( \frac{k}{A} \right) = -\frac{E_a}{2.303 \, R \, T}
\]
Step 2: Match given equation.
Given:
\[
\log \left( \frac{k}{A} \right) = -\frac{x}{T}
\]
So comparing:
\[
\frac{x}{T} = \frac{E_a}{2.303 \, R \, T} \Rightarrow x = \frac{E_a}{2.303 \, R}
\Rightarrow E_a = 2.303 \, R \, x
\]
Hence, activation energy \(E_a = 2.303 \times R \times x\)
So \(E_a/x = 2.303 \, R\)