The reaction given is:
\[\text{H}_2(g) + \text{I}_2(g) \rightleftharpoons 2\text{HI}(g)\]
At equilibrium, $\Delta n_g = 0$ (no change in the number of moles of gas). Therefore:
\[K_p = \frac{(n_{\text{HI}})^2}{n_{\text{H}_2} \cdot n_{\text{I}_2}} \cdot \left( \frac{P_T}{P_T} \right)^{\Delta n_g}\]
Since $\Delta n_g = 0$, the pressure term simplifies:
\[K_p = \frac{(n_{\text{HI}})^2}{n_{\text{H}_2} \cdot n_{\text{I}_2}}\]
Given that the number of moles of H$_2$, I$_2$, and HI are all initially equal:
\[n_{\text{H}_2} = n_{\text{I}_2} = 1, \quad n_{\text{HI}} = 1\]
Substituting into the formula:
\[K_p = \frac{(1)^2}{1 \cdot 1} = 1 \times 10^1\]
Thus:
\[x = 10\]
For the reaction A(g) $\rightleftharpoons$ 2B(g), the backward reaction rate constant is higher than the forward reaction rate constant by a factor of 2500, at 1000 K.
[Given: R = 0.0831 atm $mol^{–1} K^{–1}$]
$K_p$ for the reaction at 1000 K is:
The equilibrium constant for decomposition of $ H_2O $ (g) $ H_2O(g) \rightleftharpoons H_2(g) + \frac{1}{2} O_2(g) \quad (\Delta G^\circ = 92.34 \, \text{kJ mol}^{-1}) $ is $ 8.0 \times 10^{-3} $ at 2300 K and total pressure at equilibrium is 1 bar. Under this condition, the degree of dissociation ($ \alpha $) of water is _____ $\times 10^{-2}$ (nearest integer value). [Assume $ \alpha $ is negligible with respect to 1]
Let \( S = \left\{ m \in \mathbb{Z} : A^m + A^m = 3I - A^{-6} \right\} \), where
\[ A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \]Then \( n(S) \) is equal to ______.