To find the root mean square (RMS) velocity of an ideal gas, we use the formula:
\[ v_{rms} = \sqrt{\frac{3RT}{M}} \]
where:
Substituting the given values into the formula:
\[ v_{rms} = \sqrt{\frac{3 \times 8.3 \times 133.33}{0.083}} \]
Calculate the numerator:
\[ 3 \times 8.3 \times 133.33 = 3320.493 \]
Then divide by the molar mass:
\[ \frac{3320.493}{0.083} = 40005.9 \]
Finally, take the square root to find the RMS velocity:
\[ v_{rms} = \sqrt{40005.9} \approx 200.01 \text{ m/s} \]
Therefore, the RMS velocity of the gas at 133.33 K is approximately \( 200 \text{ m s}^{-1} \).
The formula for the RMS (Root Mean Square) velocity of an ideal gas is:
vrms = √(3RT / M)
Where:
Substituting the values:
vrms = √(3 × 8.3 × 133.33 / 0.083)
Calculating:
vrms = √(3328.9398) ≈ 200 m s−1
Conclusion:
The RMS velocity of the ideal gas is 200 m s−1.