The angular speed \( \omega \) of an object is given by:
\(\omega = \frac{2\pi}{T},\)
where \( T \) is the time period.
For the moon:
- \( T_{\text{moon}} = 27 \, \text{days} \).
For the earth:
- \( T_{\text{earth}} = 365 \, \text{days} \).
Since the moon takes less time to complete one orbit around the earth compared to the earth's revolution around the sun, \( T_{\text{moon}} < T_{\text{earth}} \). Therefore:
\(\omega_{\text{moon}} > \omega_{\text{earth}}.\)
This makes both the assertion and the reason correct, and the reason is the correct explanation of the assertion.
The correct option is (A) : Both Assertion (A) and Reason (R) are the true and Reason (R) is a correct explanation of Assertion (A).
Let \( S = \left\{ m \in \mathbb{Z} : A^m + A^m = 3I - A^{-6} \right\} \), where
\[ A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \]Then \( n(S) \) is equal to ______.
The number of 6-letter words, with or without meaning, that can be formed using the letters of the word MATHS such that any letter that appears in the word must appear at least twice, is $ 4 \_\_\_\_\_$.
Let \( f : (0, \infty) \to \mathbb{R} \) be a twice differentiable function. If for some \( a \neq 0 \), } \[ \int_0^a f(x) \, dx = f(a), \quad f(1) = 1, \quad f(16) = \frac{1}{8}, \quad \text{then } 16 - f^{-1}\left( \frac{1}{16} \right) \text{ is equal to:}\]
The work which a body needs to do, against the force of gravity, in order to bring that body into a particular space is called Gravitational potential energy. The stored is the result of the gravitational attraction of the Earth for the object. The GPE of the massive ball of a demolition machine depends on two variables - the mass of the ball and the height to which it is raised. There is a direct relation between GPE and the mass of an object. More massive objects have greater GPE. Also, there is a direct relation between GPE and the height of an object. The higher that an object is elevated, the greater the GPE. The relationship is expressed in the following manner:
PEgrav = mass x g x height
PEgrav = m x g x h
Where,
m is the mass of the object,
h is the height of the object
g is the gravitational field strength (9.8 N/kg on Earth) - sometimes referred to as the acceleration of gravity.