Step 1: Hydrostatic balance in an isothermal layer.
For a static atmosphere, \( dp/dh = -\rho g \). With temperature \(T\) constant (isothermal) and ideal gas \( p=\rho R T \Rightarrow \rho = p/(RT)\). Substitute into the hydrostatic equation:
\[
\frac{dp}{dh} = -\frac{p}{RT}g \quad \Rightarrow \quad \frac{1}{p}\,dp = -\frac{g}{RT}\,dh.
\]
Step 2: Integrate and infer density law.
Integrating from a reference \(h_0\) to \(h\):
\[
p(h) = p(h_0)\,\exp\!\left[-\frac{g}{RT}\,(h-h_0)\right].
\]
Since \( \rho(h)=p(h)/(RT) \) with \(T\) constant,
\[
\rho(h) = \rho(h_0)\,\exp\!\left[-\frac{g}{RT}\,(h-h_0)\right].
\]
Thus density decays \emph{exponentially} with altitude in an isothermal ISA layer.
\[
\boxed{\text{Density decreases exponentially with altitude.}}
\]