As per given figure A, B and C are the first, second and third excited energy level of hydrogen atom respectively. If the ratio of the two wavelengths (ie. \(\frac{λ_1}{λ_2}\)) is \(\frac{7}{4n}\) , then the value of n will be____.
We are given transitions in a hydrogen atom:
Solution
1. Rydberg Formula:
The Rydberg formula is:
\( \frac{1}{\lambda} = R \left( \frac{1}{n_1^2} - \frac{1}{n_2^2} \right) \)
2. Calculate \( \frac{1}{\lambda_1} \):
For \( \lambda_1 \), \( n_1 = 2 \) and \( n_2 = 3 \):
\( \frac{1}{\lambda_1} = R \left( \frac{1}{2^2} - \frac{1}{3^2} \right) = R \left( \frac{1}{4} - \frac{1}{9} \right) = R \left( \frac{9 - 4}{36} \right) = \frac{5R}{36} \)
3. Calculate \( \frac{1}{\lambda_2} \):
For \( \lambda_2 \), \( n_1 = 3 \) and \( n_2 = 4 \):
\( \frac{1}{\lambda_2} = R \left( \frac{1}{3^2} - \frac{1}{4^2} \right) = R \left( \frac{1}{9} - \frac{1}{16} \right) = R \left( \frac{16 - 9}{144} \right) = \frac{7R}{144} \)
4. Calculate \( \frac{\lambda_1}{\lambda_2} \):
\( \frac{\lambda_1}{\lambda_2} = \frac{\frac{1}{\frac{1}{\lambda_1}}}{\frac{1}{\frac{1}{\lambda_2}}} = \frac{\frac{1}{\lambda_2}}{\frac{1}{\lambda_1}} = \frac{1/\lambda_2}{1/\lambda_1} = \frac{5R/36}{7R/144} = \frac{144 \times 5}{36 \times 7} = \frac{4 \times 5}{7} = \frac{20}{7} \)
5. Use the Given Ratio:
We are given \( \frac{\lambda_1}{\lambda_2} = \frac{7}{4n} \).
Therefore:
\( \frac{20}{7} = \frac{7}{4n} \)
6. Solve for \( n \):
\( 80n = 49 \)
\( n = \frac{49}{80} \)
Corrected Final Answer:
n = 49/80.
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: