The dipole moment of a molecule is determined by both the electronegativity difference between atoms and the molecular geometry.
\(CCl(_3)\): Chlorine is highly electronegative, but the molecule has a symmetric trigonal planar geometry, which results in a low dipole moment due to cancellation of individual dipoles.
\( NF_3\): Nitrogen is more electronegative than fluorine, but due to the geometry of \(NF_3\) (a trigonal pyramidal shape), the dipole moment is moderate.
HBr: Bromine is less electronegative than fluorine or chlorine, but since HBr has a linear geometry, it results in a moderate dipole moment.
\( H_2S\): Due to the bent geometry of \(H_2S\) and the significant electronegativity difference between sulfur and hydrogen, \(H_2S\) has the highest dipole moment among the given compounds.
Thus, the increasing order of dipole moments is: \[ \text{H}_2\text{S} < \text{HBr} < \text{NF}_3 < \text{CCl}_3 \]
Which of the following molecules has "NON ZERO" dipole moment value?
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).

Match the LIST-I with LIST-II for an isothermal process of an ideal gas system. 
Choose the correct answer from the options given below:
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?
