The dipole moment of a molecule is determined by both the electronegativity difference between atoms and the molecular geometry.
\(CCl(_3)\): Chlorine is highly electronegative, but the molecule has a symmetric trigonal planar geometry, which results in a low dipole moment due to cancellation of individual dipoles.
\( NF_3\): Nitrogen is more electronegative than fluorine, but due to the geometry of \(NF_3\) (a trigonal pyramidal shape), the dipole moment is moderate.
HBr: Bromine is less electronegative than fluorine or chlorine, but since HBr has a linear geometry, it results in a moderate dipole moment.
\( H_2S\): Due to the bent geometry of \(H_2S\) and the significant electronegativity difference between sulfur and hydrogen, \(H_2S\) has the highest dipole moment among the given compounds.
Thus, the increasing order of dipole moments is: \[ \text{H}_2\text{S} < \text{HBr} < \text{NF}_3 < \text{CCl}_3 \]
Which of the following molecules has "NON ZERO" dipole moment value?
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 