Step 1: The angular momentum \( L \) of a particle rotating with respect to a central force is given by: \[ L = r \times p, \] where \( r \) is the position vector, and \( p \) is the linear momentum of the particle.
Step 2: The rate of change of angular momentum is related to the torque \( \tau \) acting on the particle: \[ \frac{dL}{dt} = \tau. \]
Step 3: If the torque \( \tau \) is zero, then the angular momentum remains constant. This happens when there is no external torque acting on the particle.
Step 4: Since central forces always act along the line joining the particle and the center of rotation, they produce zero torque. Therefore, the angular momentum of the particle remains constant.