To solve this problem, we need to determine the ratio of the linear momenta acquired by an α particle and a proton when both are accelerated from rest through the same potential difference. Let's break down the steps:
Therefore, the ratio of linear momenta acquired by the α particle and the proton is 2√2:1.
The ratio of linear momenta acquired by above two particles,
\(\frac{pα}{pp}=\frac{\sqrt{2(4m)(2eV)}}{{\sqrt{2(m)(eV)}}}\)
\(=\frac{\sqrt{16}}{√2}\)
=\(\frac{4}{√2}\)
\(=\frac{2√2}{1}\)
So, the correct option is (B): \(\frac{2√2}{1}\)
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 
Ordinary Differential Equations is an equation that indicates the relation of having one independent variable x, and one dependent variable y, along with some of its other derivatives.
\(F(\frac{dy}{dt},y,t) = 0\)
A partial differential equation is a type, in which the equation carries many unknown variables with their partial derivatives.

It is the linear polynomial equation in which derivatives of different variables exist. Linear Partial Differential Equation derivatives are partial and function is dependent on the variable.

When the degree of f(x,y) and g(x,y) is the same, it is known to be a homogeneous differential equation.
\(\frac{dy}{dx} = \frac{a_1x + b_1y + c_1}{a_2x + b_2y + c_2}\)
Read More: Differential Equations