The ratio of linear momenta acquired by above two particles,
\(\frac{pα}{pp}=\frac{\sqrt{2(4m)(2eV)}}{{\sqrt{2(m)(eV)}}}\)
\(=\frac{\sqrt{16}}{√2}\)
=\(\frac{4}{√2}\)
\(=\frac{2√2}{1}\)
So, the correct option is (B): \(\frac{2√2}{1}\)
A parallel plate capacitor with air between the plates has a capacitance of 4 pF. If the distance between the plates is reduced by half and the space between them is filled with a substance of dielectric constant 6, then the value of capacitance will be ……..
Match List-I with List-II: List-I
Ordinary Differential Equations is an equation that indicates the relation of having one independent variable x, and one dependent variable y, along with some of its other derivatives.
\(F(\frac{dy}{dt},y,t) = 0\)
A partial differential equation is a type, in which the equation carries many unknown variables with their partial derivatives.
It is the linear polynomial equation in which derivatives of different variables exist. Linear Partial Differential Equation derivatives are partial and function is dependent on the variable.
When the degree of f(x,y) and g(x,y) is the same, it is known to be a homogeneous differential equation.
\(\frac{dy}{dx} = \frac{a_1x + b_1y + c_1}{a_2x + b_2y + c_2}\)
Read More: Differential Equations