The ratio of linear momenta acquired by above two particles,
\(\frac{pα}{pp}=\frac{\sqrt{2(4m)(2eV)}}{{\sqrt{2(m)(eV)}}}\)
\(=\frac{\sqrt{16}}{√2}\)
=\(\frac{4}{√2}\)
\(=\frac{2√2}{1}\)
So, the correct option is (B): \(\frac{2√2}{1}\)
A body starts moving from rest with constant acceleration and covers displacement \(S_1\) in the first \((p - 1)\) seconds and \(S_2\) in the first \(p\) seconds. The displacement \(S_1 + S_2\) will be made in time:
The portion of the line \( 4x + 5y = 20 \) in the first quadrant is trisected by the lines \( L_1 \) and \( L_2 \) passing through the origin. The tangent of an angle between the lines \( L_1 \) and \( L_2 \) is:
Ordinary Differential Equations is an equation that indicates the relation of having one independent variable x, and one dependent variable y, along with some of its other derivatives.
\(F(\frac{dy}{dt},y,t) = 0\)
A partial differential equation is a type, in which the equation carries many unknown variables with their partial derivatives.
It is the linear polynomial equation in which derivatives of different variables exist. Linear Partial Differential Equation derivatives are partial and function is dependent on the variable.
When the degree of f(x,y) and g(x,y) is the same, it is known to be a homogeneous differential equation.
\(\frac{dy}{dx} = \frac{a_1x + b_1y + c_1}{a_2x + b_2y + c_2}\)
Read More: Differential Equations