Step 1: Formula for frequency in an open organ pipe.- Fundamental frequency f1 = $\frac{v}{2L}$, where v = 360m/s, L = 0.4m.- Frequency of second harmonic f2 = 2f1.
Step 2: Calculate the frequency.
f1 = $\frac{360}{2 \times 0.4}$ = 450Hz.
f2 = 2 × 450 = 900Hz.
Final Answer: The frequency of the second harmonic is 900Hz


For the circuit shown above, the equivalent gate is:
Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \[ (\sin x \cos y)(f(2x + 2y) - f(2x - 2y)) = (\cos x \sin y)(f(2x + 2y) + f(2x - 2y)), \] for all \( x, y \in \mathbb{R}. \)
If \( f'(0) = \frac{1}{2} \), then the value of \( 24f''\left( \frac{5\pi}{3} \right) \) is: