Let the third side of this triangle be x.
Perimeter of triangle = 30 cm
\(⇒\) 30 = 12 + 12 + c
c = 30 - 24
c = 6 cm
Semi Perimeter (s) = \(\frac{P}{2}\) =\( \frac{\text{(a + b + c)}}{2}\)
s = \(\frac{30}{2}\)
s = 15 cm
Using Heron’s formula,
Area of a triangle = \(\sqrt{\text{s(s - a)(s - b)(s - c)}}\)
\(= \sqrt{\text{15(15 - 12)(15 -12)(15 - 6)}}\)
\(= \sqrt{15 × 3 × 3 × 9}\)
\(= \sqrt{1215}\)
\(= 9\sqrt{15} \) cm2
Area of the triangle \(= 9\sqrt{15} \) cm2
In Fig. 9.26, A, B, C and D are four points on a circle. AC and BD intersect at a point E such that ∠ BEC = 130° and ∠ ECD = 20°. Find ∠ BAC.