Question:

An infinitely long wire, located on the z-axis, carries a current I along the +z-direction and produces the magnetic field Bˉ\bar{B} . The magnitude of the line integral B.dl∫ \overrightarrow{B}.\overrightarrow{dl} along a straight line from the point (3a,a,0) (−√3a, a, 0) to (a,a,0)(a, a, 0) is given by [μ0\mu_0 is the magnetic permeability of free space.]

Updated On: Mar 26, 2025
  • 7μoI24\frac{7\mu_oI}{24}
  • 7μoI12\frac{7\mu_oI}{12}
  • μoI8\frac{\mu_oI}{8}
  • μoI6\frac{\mu_oI}{6}
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Magnetic Field and Line Integral 

1. Magnetic Field Due to a Current-Carrying Wire

The magnetic field at a distance r r from a current-carrying wire is given by:

B=μ0I2πr \mathbf{B} = \frac{\mu_0 I}{2\pi r}

2. Line Integral Calculation

The line integral is given by:

Bdl=Bcosθdl. \int \mathbf{B} \cdot d\mathbf{l} = \int B \cos\theta \, dl.

Geometry of the Path:

  • The path extends from (3a,a,0) (-\sqrt{3}a, a, 0) to (a,a,0) (a, a, 0) .
  • Parametric equation: x[3a,a] x \in [-\sqrt{3}a, a] , y=a y = a , z=0 z = 0 .

The magnetic field at (x,a,0) (x, a, 0) due to the wire at the origin is:

B=μ0I2πx2+a2ϕ^ \mathbf{B} = \frac{\mu_0 I}{2\pi \sqrt{x^2 + a^2}} \hat{\phi}

The element of the path is:

dl=dxi^ d\mathbf{l} = dx \hat{i}

The angle between B \mathbf{B} and dl d\mathbf{l} is θ=(ϕ^,i^) \theta = \angle(\hat{\phi}, \hat{i}) , with:

cosθ=ax2+a2. \cos\theta = \frac{a}{\sqrt{x^2 + a^2}}.

3. Computing the Line Integral

Substituting into the integral:

Bdl=3aaμ0I2πx2+a2ax2+a2dx \int \mathbf{B} \cdot d\mathbf{l} = \int_{-\sqrt{3}a}^{a} \frac{\mu_0 I}{2\pi \sqrt{x^2 + a^2}} \cdot \frac{a}{\sqrt{x^2 + a^2}} dx

=μ0Ia2π3aadxx2+a2. = \frac{\mu_0 I a}{2\pi} \int_{-\sqrt{3}a}^{a} \frac{dx}{x^2 + a^2}.

4. Evaluating the Integral

Using the known integral result:

dxx2+a2=1atan1(xa), \int \frac{dx}{x^2 + a^2} = \frac{1}{a} \tan^{-1} \left( \frac{x}{a} \right),

we apply limits:

3aadxx2+a2=1a[tan1(aa)tan1(3aa)]. \int_{-\sqrt{3}a}^{a} \frac{dx}{x^2 + a^2} = \frac{1}{a} \left[ \tan^{-1} \left( \frac{a}{a} \right) - \tan^{-1} \left( \frac{-\sqrt{3}a}{a} \right) \right].

Simplifying:

=1a(tan1(1)tan1(3)). = \frac{1}{a} \left( \tan^{-1}(1) - \tan^{-1}(-\sqrt{3}) \right).

Using standard values:

  • tan1(1)=π4 \tan^{-1}(1) = \frac{\pi}{4}
  • tan1(3)=π3 \tan^{-1}(-\sqrt{3}) = -\frac{\pi}{3}

=1a(π4+π3). = \frac{1}{a} \left( \frac{\pi}{4} + \frac{\pi}{3} \right).

Calculating the sum:

=1a7π12. = \frac{1}{a} \cdot \frac{7\pi}{12}.

5. Final Result

Bdl=μ0Ia2π1a7π12=7μ0I24. \int \mathbf{B} \cdot d\mathbf{l} = \frac{\mu_0 I a}{2\pi} \cdot \frac{1}{a} \cdot \frac{7\pi}{12} = \frac{7\mu_0 I}{24}.

Final Answer:

7μ0I24 \frac{7\mu_0 I}{24}

Was this answer helpful?
1
1

Top Questions on Current electricity

View More Questions

Questions Asked in JEE Advanced exam

View More Questions