Magnetic Field and Line Integral 1. Magnetic Field Due to a Current-Carrying Wire The magnetic field at a distance r r r from a current-carrying wire is given by:
B = μ 0 I 2 π r \mathbf{B} = \frac{\mu_0 I}{2\pi r} B = 2 π r μ 0 I
2. Line Integral Calculation The line integral is given by:
∫ B ⋅ d l = ∫ B cos θ d l . \int \mathbf{B} \cdot d\mathbf{l} = \int B \cos\theta \, dl. ∫ B ⋅ d l = ∫ B cos θ d l .
Geometry of the Path: The path extends from ( − 3 a , a , 0 ) (-\sqrt{3}a, a, 0) ( − 3 a , a , 0 ) to ( a , a , 0 ) (a, a, 0) ( a , a , 0 ) . Parametric equation: x ∈ [ − 3 a , a ] x \in [-\sqrt{3}a, a] x ∈ [ − 3 a , a ] , y = a y = a y = a , z = 0 z = 0 z = 0 . The magnetic field at ( x , a , 0 ) (x, a, 0) ( x , a , 0 ) due to the wire at the origin is:
B = μ 0 I 2 π x 2 + a 2 ϕ ^ \mathbf{B} = \frac{\mu_0 I}{2\pi \sqrt{x^2 + a^2}} \hat{\phi} B = 2 π x 2 + a 2 μ 0 I ϕ ^
The element of the path is:
d l = d x i ^ d\mathbf{l} = dx \hat{i} d l = d x i ^
The angle between B \mathbf{B} B and d l d\mathbf{l} d l is θ = ∠ ( ϕ ^ , i ^ ) \theta = \angle(\hat{\phi}, \hat{i}) θ = ∠ ( ϕ ^ , i ^ ) , with:
cos θ = a x 2 + a 2 . \cos\theta = \frac{a}{\sqrt{x^2 + a^2}}. cos θ = x 2 + a 2 a .
3. Computing the Line Integral Substituting into the integral:
∫ B ⋅ d l = ∫ − 3 a a μ 0 I 2 π x 2 + a 2 ⋅ a x 2 + a 2 d x \int \mathbf{B} \cdot d\mathbf{l} = \int_{-\sqrt{3}a}^{a} \frac{\mu_0 I}{2\pi \sqrt{x^2 + a^2}} \cdot \frac{a}{\sqrt{x^2 + a^2}} dx ∫ B ⋅ d l = ∫ − 3 a a 2 π x 2 + a 2 μ 0 I ⋅ x 2 + a 2 a d x
= μ 0 I a 2 π ∫ − 3 a a d x x 2 + a 2 . = \frac{\mu_0 I a}{2\pi} \int_{-\sqrt{3}a}^{a} \frac{dx}{x^2 + a^2}. = 2 π μ 0 I a ∫ − 3 a a x 2 + a 2 d x .
4. Evaluating the Integral Using the known integral result:
∫ d x x 2 + a 2 = 1 a tan − 1 ( x a ) , \int \frac{dx}{x^2 + a^2} = \frac{1}{a} \tan^{-1} \left( \frac{x}{a} \right), ∫ x 2 + a 2 d x = a 1 tan − 1 ( a x ) ,
we apply limits:
∫ − 3 a a d x x 2 + a 2 = 1 a [ tan − 1 ( a a ) − tan − 1 ( − 3 a a ) ] . \int_{-\sqrt{3}a}^{a} \frac{dx}{x^2 + a^2} = \frac{1}{a} \left[ \tan^{-1} \left( \frac{a}{a} \right) - \tan^{-1} \left( \frac{-\sqrt{3}a}{a} \right) \right]. ∫ − 3 a a x 2 + a 2 d x = a 1 [ tan − 1 ( a a ) − tan − 1 ( a − 3 a ) ] .
Simplifying:
= 1 a ( tan − 1 ( 1 ) − tan − 1 ( − 3 ) ) . = \frac{1}{a} \left( \tan^{-1}(1) - \tan^{-1}(-\sqrt{3}) \right). = a 1 ( tan − 1 ( 1 ) − tan − 1 ( − 3 ) ) .
Using standard values:
tan − 1 ( 1 ) = π 4 \tan^{-1}(1) = \frac{\pi}{4} tan − 1 ( 1 ) = 4 π tan − 1 ( − 3 ) = − π 3 \tan^{-1}(-\sqrt{3}) = -\frac{\pi}{3} tan − 1 ( − 3 ) = − 3 π = 1 a ( π 4 + π 3 ) . = \frac{1}{a} \left( \frac{\pi}{4} + \frac{\pi}{3} \right). = a 1 ( 4 π + 3 π ) .
Calculating the sum:
= 1 a ⋅ 7 π 12 . = \frac{1}{a} \cdot \frac{7\pi}{12}. = a 1 ⋅ 12 7 π .
5. Final Result ∫ B ⋅ d l = μ 0 I a 2 π ⋅ 1 a ⋅ 7 π 12 = 7 μ 0 I 24 . \int \mathbf{B} \cdot d\mathbf{l} = \frac{\mu_0 I a}{2\pi} \cdot \frac{1}{a} \cdot \frac{7\pi}{12} = \frac{7\mu_0 I}{24}. ∫ B ⋅ d l = 2 π μ 0 I a ⋅ a 1 ⋅ 12 7 π = 24 7 μ 0 I .
Final Answer: 7 μ 0 I 24 \frac{7\mu_0 I}{24} 24 7 μ 0 I