To solve the problem, we need to identify the enzyme that is lacking in an infant suffering from indigestion.
1. Understanding the Role of Enzymes in Digestion:
Different enzymes play crucial roles in the digestive process:
2. Analyzing the Enzyme Lacking in an Infant:
In infants, the absence of rennin can lead to indigestion, especially related to milk, as it helps in curdling milk and aids in its proper digestion.
Final Answer:
The correct option is (B) Rennin.
Match the LIST-I (Radiations) with LIST-II (Wavelength range):
\[
\begin{array}{|l|l|}
\hline
\textbf{LIST I (Radiations)} & \textbf{LIST II (Wavelength Range)} \\
\hline
A. \ \text{Gamma Rays} & I. \ 10^{-2} \ \text{meters to} \ 10^{-1} \ \text{meters} \\
B. \ \text{UV Rays} & II. \ >10^{1} \ \text{meters} \\
C. \ \text{Micro Waves} & III. \ 10^{-13} \ \text{meters to} \ 10^{-11} \ \text{meters} \\
D. \ \text{Radio Waves} & IV. \ 10^{-9} \ \text{meters to} \ 10^{-7} \ \text{meters} \\
\hline
\end{array}
\]
Choose the correct answer from the options given below:
Match the LIST-I (EEG Signals) with LIST-II (Frequency):
\[
\begin{array}{|l|l|}
\hline
\textbf{LIST I (EEG Signals)} & \textbf{LIST II (Frequency)} \\
\hline
A. \ \text{Alpha (} \alpha \text{)} & I. \ \text{0.5 - 4 Hz} \\
B. \ \text{Gamma (} \gamma \text{)} & II. \ \text{4 - 8 Hz} \\
C. \ \text{Delta (} \delta \text{)} & III. \ \text{8 - 13 Hz} \\
D. \ \text{Theta (} \theta \text{)} & IV. \ \text{22 - 30 Hz} \\
\hline
\end{array}
\]
Choose the correct answer from the options given below:
Match the LIST-I with LIST-II:
\[
\begin{array}{|l|l|}
\hline
\textbf{LIST I} & \textbf{LIST II} \\
\hline
A. \ \text{Parathyroid} & I. \ \text{Gonadotropin} \\
B. \ \text{Pancreas} & II. \ \text{Parathormone} \\
C. \ \text{Pineal Gland} & III. \ \text{Insulin} \\
D. \ \text{Placenta} & IV. \ \text{Melatonin} \\
\hline
\end{array}
\]
Choose the correct answer from the options given below:
Two concentric thin circular rings of radii 50 cm and 40 cm each, carry a current of 3.5 A in opposite directions. If the two rings are coplanar, the net magnetic field due to the two rings at their centre is: