\(\frac{2}{T}\)
\(\frac{3}{T}\)
\(\frac{1}{2T}\)
\(\frac{1}{T}\)
Given:
\[ \frac{dV}{V} = \alpha \frac{dT}{T} \]
For a constant \( P T^2 \), we have:
\[ \frac{dV}{dT} = \left( C \right) \frac{3}{T^2} \]
So, the volume expansion coefficient is:
\[ \frac{dV}{V} = \frac{3}{T^2} \cdot dT \]
List - I | List -II | ||
---|---|---|---|
a | Isothermal | i | Pressure constant |
b | Isobaric | ii | Temperature constant |
c | Adiabatic | iii | Volume constant |
d | Isobaric | iv | Heat content is constant |
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: