\(\frac{2}{T}\)
\(\frac{3}{T}\)
\(\frac{1}{2T}\)
\(\frac{1}{T}\)
Given:
\[ \frac{dV}{V} = \alpha \frac{dT}{T} \]
For a constant \( P T^2 \), we have:
\[ \frac{dV}{dT} = \left( C \right) \frac{3}{T^2} \]
So, the volume expansion coefficient is:
\[ \frac{dV}{V} = \frac{3}{T^2} \cdot dT \]

| List - I | List -II | ||
|---|---|---|---|
| a | Isothermal | i | Pressure constant |
| b | Isobaric | ii | Temperature constant |
| c | Adiabatic | iii | Volume constant |
| d | Isobaric | iv | Heat content is constant |
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: