\(\frac{2}{T}\)
\(\frac{3}{T}\)
\(\frac{1}{2T}\)
\(\frac{1}{T}\)
Given:
\[ \frac{dV}{V} = \alpha \frac{dT}{T} \]
For a constant \( P T^2 \), we have:
\[ \frac{dV}{dT} = \left( C \right) \frac{3}{T^2} \]
So, the volume expansion coefficient is:
\[ \frac{dV}{V} = \frac{3}{T^2} \cdot dT \]
Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.
Consider an A.P. $a_1,a_2,\ldots,a_n$; $a_1>0$. If $a_2-a_1=-\dfrac{3}{4}$, $a_n=\dfrac{1}{4}a_1$, and \[ \sum_{i=1}^{n} a_i=\frac{525}{2}, \] then $\sum_{i=1}^{17} a_i$ is equal to
