For an isothermal expansion of an ideal gas, the work done by the gas is given by:
\[
W = nRT \ln \left( \frac{V_f}{V_i} \right)
\]
Where:
- \( W \) is the work done by the gas,
- \( n \) is the number of moles of the gas,
- \( R = 8.31 \, \text{J/mol·K} \) is the universal gas constant,
- \( T = 300 \, \text{K} \) is the temperature,
- \( V_f = 8 \, \text{L} \) is the final volume,
- \( V_i = 2 \, \text{L} \) is the initial volume.
First, we calculate the number of moles \( n \) of the gas using the ideal gas equation:
\[
PV = nRT
\]
Substitute the given values:
\[
(2 \times 10^5) \times (2 \times 10^{-3}) = n \times 8.31 \times 300
\]
\[
n = \frac{(2 \times 10^5) \times (2 \times 10^{-3})}{8.31 \times 300} \approx 0.16 \, \text{mol}
\]
Now, calculate the work done:
\[
W = 0.16 \times 8.31 \times 300 \times \ln \left( \frac{8}{2} \right)
\]
\[
W = 0.16 \times 8.31 \times 300 \times \ln(4)
\]
\[
W \approx 7200 \, \text{J}
\]
Thus, the work done by the gas is \( 7200 \, \text{J} \).