Let's denote the temperatures as follows:
The Carnot engine (E) operates between $ T_H $ and $ T_C $, so its efficiency is:
$$ \eta_{12} = 1 - \frac{T_C}{T_H} = 1 - \frac{273}{473} = \frac{473 - 273}{473} = \frac{200}{473} $$
Engine $ E_1 $ operates between $ T_H $ and $ T_M $, so its efficiency is:
$$ \eta_1 = 1 - \frac{T_M}{T_H} = 1 - \frac{373}{473} = \frac{473 - 373}{473} = \frac{100}{473} $$
Engine $ E_2 $ operates between $ T_M $ and $ T_C $, so its efficiency is:
$$ \eta_2 = 1 - \frac{T_C}{T_M} = 1 - \frac{273}{373} = \frac{373 - 273}{373} = \frac{100}{373} $$
We need to compare $ \eta_{12} $ with $ \eta_1 + \eta_2 $ and $ \eta_1 \eta_2 $.
$$ \eta_1 + \eta_2 = \frac{100}{473} + \frac{100}{373} = 100 \left( \frac{1}{473} + \frac{1}{373} \right)$$
$$= 100 \left( \frac{373 + 473}{473 \cdot 373} \right) = 100 \left( \frac{846}{473 \cdot 373} \right) = \frac{84600}{176329} \approx 0.4798 $$
$$ \eta_1 \eta_2 = \frac{100}{473} \times \frac{100}{373} = \frac{10000}{176329} \approx 0.0567 $$
$$ \eta_{12} = \frac{200}{473} \approx 0.4228 $$
Comparison:
Now let's check if $ (1 - \eta_1)(1 - \eta_2) = 1 - \eta_{12} $:
$$ (1 - \eta_1)(1 - \eta_2) = \frac{373}{473} \times \frac{273}{373} = \frac{273}{473} = 1 - \eta_{12} $$
This implies:
$$ 1 - \eta_1 - \eta_2 + \eta_1 \eta_2 = 1 - \eta_{12} $$
$$ \Rightarrow \eta_{12} = \eta_1 + \eta_2 - \eta_1 \eta_2 $$
Since $ \eta_1 \eta_2 > 0 $, it follows that $ \eta_{12} < \eta_1 + \eta_2 $.
Final Answer:
The final answer is $ \eta_{12} < \eta_1 + \eta_2 $.
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
Two blocks of masses \( m \) and \( M \), \( (M > m) \), are placed on a frictionless table as shown in figure. A massless spring with spring constant \( k \) is attached with the lower block. If the system is slightly displaced and released then \( \mu = \) coefficient of friction between the two blocks.
(A) The time period of small oscillation of the two blocks is \( T = 2\pi \sqrt{\dfrac{(m + M)}{k}} \)
(B) The acceleration of the blocks is \( a = \dfrac{kx}{M + m} \)
(\( x = \) displacement of the blocks from the mean position)
(C) The magnitude of the frictional force on the upper block is \( \dfrac{m\mu |x|}{M + m} \)
(D) The maximum amplitude of the upper block, if it does not slip, is \( \dfrac{\mu (M + m) g}{k} \)
(E) Maximum frictional force can be \( \mu (M + m) g \)
Choose the correct answer from the options given below:
Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \[ (\sin x \cos y)(f(2x + 2y) - f(2x - 2y)) = (\cos x \sin y)(f(2x + 2y) + f(2x - 2y)), \] for all \( x, y \in \mathbb{R}. \)
If \( f'(0) = \frac{1}{2} \), then the value of \( 24f''\left( \frac{5\pi}{3} \right) \) is: