Let's denote the temperatures as follows:
The Carnot engine (E) operates between $ T_H $ and $ T_C $, so its efficiency is:
$$ \eta_{12} = 1 - \frac{T_C}{T_H} = 1 - \frac{273}{473} = \frac{473 - 273}{473} = \frac{200}{473} $$
Engine $ E_1 $ operates between $ T_H $ and $ T_M $, so its efficiency is:
$$ \eta_1 = 1 - \frac{T_M}{T_H} = 1 - \frac{373}{473} = \frac{473 - 373}{473} = \frac{100}{473} $$
Engine $ E_2 $ operates between $ T_M $ and $ T_C $, so its efficiency is:
$$ \eta_2 = 1 - \frac{T_C}{T_M} = 1 - \frac{273}{373} = \frac{373 - 273}{373} = \frac{100}{373} $$
We need to compare $ \eta_{12} $ with $ \eta_1 + \eta_2 $ and $ \eta_1 \eta_2 $.
$$ \eta_1 + \eta_2 = \frac{100}{473} + \frac{100}{373} = 100 \left( \frac{1}{473} + \frac{1}{373} \right)$$
$$= 100 \left( \frac{373 + 473}{473 \cdot 373} \right) = 100 \left( \frac{846}{473 \cdot 373} \right) = \frac{84600}{176329} \approx 0.4798 $$
$$ \eta_1 \eta_2 = \frac{100}{473} \times \frac{100}{373} = \frac{10000}{176329} \approx 0.0567 $$
$$ \eta_{12} = \frac{200}{473} \approx 0.4228 $$
Comparison:
Now let's check if $ (1 - \eta_1)(1 - \eta_2) = 1 - \eta_{12} $:
$$ (1 - \eta_1)(1 - \eta_2) = \frac{373}{473} \times \frac{273}{373} = \frac{273}{473} = 1 - \eta_{12} $$
This implies:
$$ 1 - \eta_1 - \eta_2 + \eta_1 \eta_2 = 1 - \eta_{12} $$
$$ \Rightarrow \eta_{12} = \eta_1 + \eta_2 - \eta_1 \eta_2 $$
Since $ \eta_1 \eta_2 > 0 $, it follows that $ \eta_{12} < \eta_1 + \eta_2 $.
Final Answer:
The final answer is $ \eta_{12} < \eta_1 + \eta_2 $.
The following graph indicates the system containing 1 mole of gas involving various steps. When it moves from Z to X, the type of undergoing process is: