Applying Bernoulli’s theorem: \(P_1 + \rho g h + \frac{1}{2} \rho v^2 = P_2 + \frac{1}{2} \rho (2v)^2\)
Putting the values, \(4100=800(\frac{3}{2}v^2−10)\)
\(⇒v=\frac{\sqrt{363}}{6}m/s\)
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is:
The term independent of $ x $ in the expansion of $$ \left( \frac{x + 1}{x^{3/2} + 1 - \sqrt{x}} \cdot \frac{x + 1}{x - \sqrt{x}} \right)^{10} $$ for $ x>1 $ is: