The ionic character of a compound depends on the difference in ionisation enthalpy and electron gain enthalpy. The larger the difference, the greater the ionic character. A compound with a more negative electron gain enthalpy will result in a stronger ionic bond. Given that the electron gain enthalpy values for elements A, B, C, and D are as follows:
- \( {A} \) has \( -328 \, {kJ/mol} \)
- \( {B} \) has \( -349 \, {kJ/mol} \)
- \( {C} \) has \( -325 \, {kJ/mol} \)
- \( {D} \) has \( -295 \, {kJ/mol} \)
The order of ionic character is given by the electron gain enthalpy, where \( {D} \) has the highest ionic character and \( {A} \) has the least. Thus, the correct order is (3): \( {ED}>{EC}>{EB}>{EA} \).
For the reaction, \[ H_2(g) + I_2(g) \rightleftharpoons 2HI(g) \]
Attainment of equilibrium is predicted correctly by:
The value of current \( I \) in the electrical circuit as given below, when the potential at \( A \) is equal to the potential at \( B \), will be _____ A.
Two light beams fall on a transparent material block at point 1 and 2 with angle \( \theta_1 \) and \( \theta_2 \), respectively, as shown in the figure. After refraction, the beams intersect at point 3 which is exactly on the interface at the other end of the block. Given: the distance between 1 and 2, \( d = \frac{4}{3} \) cm and \( \theta_1 = \theta_2 = \cos^{-1} \left( \frac{n_2}{2n_1} \right) \), where \( n_2 \) is the refractive index of the block and \( n_1 \) is the refractive index of the outside medium, then the thickness of the block is …….. cm.