The ionic character of a compound depends on the difference in ionisation enthalpy and electron gain enthalpy. The larger the difference, the greater the ionic character. A compound with a more negative electron gain enthalpy will result in a stronger ionic bond. Given that the electron gain enthalpy values for elements A, B, C, and D are as follows:
- \( {A} \) has \( -328 \, {kJ/mol} \)
- \( {B} \) has \( -349 \, {kJ/mol} \)
- \( {C} \) has \( -325 \, {kJ/mol} \)
- \( {D} \) has \( -295 \, {kJ/mol} \)
The order of ionic character is given by the electron gain enthalpy, where \( {D} \) has the highest ionic character and \( {A} \) has the least. Thus, the correct order is (3): \( {ED}>{EC}>{EB}>{EA} \).
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.
Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.
Consider an A.P. $a_1,a_2,\ldots,a_n$; $a_1>0$. If $a_2-a_1=-\dfrac{3}{4}$, $a_n=\dfrac{1}{4}a_1$, and \[ \sum_{i=1}^{n} a_i=\frac{525}{2}, \] then $\sum_{i=1}^{17} a_i$ is equal to