The ionic character of a compound depends on the difference in ionisation enthalpy and electron gain enthalpy. The larger the difference, the greater the ionic character. A compound with a more negative electron gain enthalpy will result in a stronger ionic bond. Given that the electron gain enthalpy values for elements A, B, C, and D are as follows:
- \( {A} \) has \( -328 \, {kJ/mol} \)
- \( {B} \) has \( -349 \, {kJ/mol} \)
- \( {C} \) has \( -325 \, {kJ/mol} \)
- \( {D} \) has \( -295 \, {kJ/mol} \)
The order of ionic character is given by the electron gain enthalpy, where \( {D} \) has the highest ionic character and \( {A} \) has the least. Thus, the correct order is (3): \( {ED}>{EC}>{EB}>{EA} \).
If \[ f(x) = \int \frac{1}{x^{1/4} (1 + x^{1/4})} \, dx, \quad f(0) = -6 \], then f(1) is equal to: