Step 1: Data and formula for mechanical energy The total mechanical energy at the Earth’s surface is:
\( T.E_i = -\frac{GM_e m}{R_e}, \)
where:
The altitude of the orbit is given as \( h = 318.5 \, \text{km} \). Approximate:
\( h \approx \frac{R_e}{20}. \)
The total mechanical energy in the orbit is:
\( T.E_f = -\frac{GM_e m}{2(R_e + h)}. \)
Step 2: Substitute \( h \approx \frac{R_e}{20} \)
\( T.E_f = -\frac{GM_e m}{2 \left( R_e + \frac{R_e}{20} \right)} = -\frac{GM_e m}{2 \left( \frac{21R_e}{20} \right)}. \)
Simplify:
\( T.E_f = -\frac{10GM_e m}{21R_e}. \)
Step 3: Change in mechanical energy The change in total mechanical energy is:
\( \Delta E = T.E_f - T.E_i. \)
Substitute:
\( \Delta E = \left( -\frac{10GM_e m}{21R_e} \right) - \left( -\frac{GM_e m}{R_e} \right). \)
Simplify:
\( \Delta E = -\frac{10GM_e m}{21R_e} + \frac{21GM_e m}{21R_e}. \)
\( \Delta E = \frac{11GM_e m}{21R_e}. \)
Thus, \( x = 11 \).
Final Answer: \( x = 11 \).
A small point of mass \(m\) is placed at a distance \(2R\) from the center \(O\) of a big uniform solid sphere of mass \(M\) and radius \(R\). The gravitational force on \(m\) due to \(M\) is \(F_1\). A spherical part of radius \(R/3\) is removed from the big sphere as shown in the figure, and the gravitational force on \(m\) due to the remaining part of \(M\) is found to be \(F_2\). The value of the ratio \( F_1 : F_2 \) is: