Step 1: Data and formula for mechanical energy The total mechanical energy at the Earth’s surface is:
\( T.E_i = -\frac{GM_e m}{R_e}, \)
where:
The altitude of the orbit is given as \( h = 318.5 \, \text{km} \). Approximate:
\( h \approx \frac{R_e}{20}. \)
The total mechanical energy in the orbit is:
\( T.E_f = -\frac{GM_e m}{2(R_e + h)}. \)
Step 2: Substitute \( h \approx \frac{R_e}{20} \)
\( T.E_f = -\frac{GM_e m}{2 \left( R_e + \frac{R_e}{20} \right)} = -\frac{GM_e m}{2 \left( \frac{21R_e}{20} \right)}. \)
Simplify:
\( T.E_f = -\frac{10GM_e m}{21R_e}. \)
Step 3: Change in mechanical energy The change in total mechanical energy is:
\( \Delta E = T.E_f - T.E_i. \)
Substitute:
\( \Delta E = \left( -\frac{10GM_e m}{21R_e} \right) - \left( -\frac{GM_e m}{R_e} \right). \)
Simplify:
\( \Delta E = -\frac{10GM_e m}{21R_e} + \frac{21GM_e m}{21R_e}. \)
\( \Delta E = \frac{11GM_e m}{21R_e}. \)
Thus, \( x = 11 \).
Final Answer: \( x = 11 \).
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).