Step 1: Data and formula for mechanical energy The total mechanical energy at the Earth’s surface is:
\( T.E_i = -\frac{GM_e m}{R_e}, \)
where:
The altitude of the orbit is given as \( h = 318.5 \, \text{km} \). Approximate:
\( h \approx \frac{R_e}{20}. \)
The total mechanical energy in the orbit is:
\( T.E_f = -\frac{GM_e m}{2(R_e + h)}. \)
Step 2: Substitute \( h \approx \frac{R_e}{20} \)
\( T.E_f = -\frac{GM_e m}{2 \left( R_e + \frac{R_e}{20} \right)} = -\frac{GM_e m}{2 \left( \frac{21R_e}{20} \right)}. \)
Simplify:
\( T.E_f = -\frac{10GM_e m}{21R_e}. \)
Step 3: Change in mechanical energy The change in total mechanical energy is:
\( \Delta E = T.E_f - T.E_i. \)
Substitute:
\( \Delta E = \left( -\frac{10GM_e m}{21R_e} \right) - \left( -\frac{GM_e m}{R_e} \right). \)
Simplify:
\( \Delta E = -\frac{10GM_e m}{21R_e} + \frac{21GM_e m}{21R_e}. \)
\( \Delta E = \frac{11GM_e m}{21R_e}. \)
Thus, \( x = 11 \).
Final Answer: \( x = 11 \).
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: