Step 1: Compute lift required in steady level flight.
\[
L = W = mg = 1000 \times 10 = 10000 \, \text{N}
\]
Step 2: Aspect ratio of wing.
Span = $b = 20$ m, Area = $S = 31.4$ m$^2$.
\[
AR = \frac{b^2}{S} = \frac{20^2}{31.4} = \frac{400}{31.4} \approx 12.74
\]
Step 3: Dynamic pressure.
\[
q = \tfrac{1}{2} \rho V^2 = 0.5 \times 1 \times 50^2 = 1250 \, \text{N/m}^2
\]
Step 4: Lift coefficient.
\[
C_L = \frac{L}{q S} = \frac{10000}{1250 \times 31.4} = \frac{10000}{39250} \approx 0.255
\]
Step 5: Induced drag coefficient (elliptical wing, efficiency $e=1$).
\[
C_{D_i} = \frac{C_L^2}{\pi AR e} = \frac{0.255^2}{\pi \times 12.74}
\]
\[
C_{D_i} = \frac{0.0650}{39.98} \approx 0.00163
\]
Step 6: Induced drag.
\[
D_i = q S C_{D_i} = 1250 \times 31.4 \times 0.00163
\]
\[
D_i \approx 12.7 \, \text{N}
\]
\[
\boxed{12.7 \, \text{N}}
\]