
The inductive reactance is:
\[ X_L = \omega L = 100 \times 1 = 100 \, \Omega. \]
The capacitive reactance is:
\[ X_C = \frac{1}{\omega C} = \frac{1}{100 \times 20 \times 10^{-6}} = 500 \, \Omega. \]
The total impedance is:
\[ Z = \sqrt{(X_L - X_C)^2 + R^2} = \sqrt{(100 - 500)^2 + 300^2}. \]
Simplifying:
\[ Z = \sqrt{(-400)^2 + 300^2} = \sqrt{160000 + 90000} = 500 \, \Omega. \]
The rms current is:
\[ i_{\text{rms}} = \frac{V_{\text{rms}}}{Z} = \frac{50}{500} = 0.1 \, \text{A}. \]
The rms voltage across the capacitor is:
\[ V_{\text{rms, capacitor}} = X_C \cdot i_{\text{rms}} = 500 \times 0.1 = 50 \, \text{V}. \]
Find output voltage in the given circuit. 
Consider the sound wave travelling in ideal gases of $\mathrm{He}, \mathrm{CH}_{4}$, and $\mathrm{CO}_{2}$. All the gases have the same ratio $\frac{\mathrm{P}}{\rho}$, where P is the pressure and $\rho$ is the density. The ratio of the speed of sound through the gases $\mathrm{v}_{\mathrm{He}}: \mathrm{v}_{\mathrm{CH}_{4}}: \mathrm{v}_{\mathrm{CO}_{2}}$ is given by