The inductive reactance is:
\[ X_L = \omega L = 100 \times 1 = 100 \, \Omega. \]
The capacitive reactance is:
\[ X_C = \frac{1}{\omega C} = \frac{1}{100 \times 20 \times 10^{-6}} = 500 \, \Omega. \]
The total impedance is:
\[ Z = \sqrt{(X_L - X_C)^2 + R^2} = \sqrt{(100 - 500)^2 + 300^2}. \]
Simplifying:
\[ Z = \sqrt{(-400)^2 + 300^2} = \sqrt{160000 + 90000} = 500 \, \Omega. \]
The rms current is:
\[ i_{\text{rms}} = \frac{V_{\text{rms}}}{Z} = \frac{50}{500} = 0.1 \, \text{A}. \]
The rms voltage across the capacitor is:
\[ V_{\text{rms, capacitor}} = X_C \cdot i_{\text{rms}} = 500 \times 0.1 = 50 \, \text{V}. \]
A | B | Y |
0 | 0 | 1 |
0 | 1 | 0 |
1 | 0 | 1 |
1 | 1 | 0 |