The inductive reactance is:
\[ X_L = \omega L = 100 \times 1 = 100 \, \Omega. \]
The capacitive reactance is:
\[ X_C = \frac{1}{\omega C} = \frac{1}{100 \times 20 \times 10^{-6}} = 500 \, \Omega. \]
The total impedance is:
\[ Z = \sqrt{(X_L - X_C)^2 + R^2} = \sqrt{(100 - 500)^2 + 300^2}. \]
Simplifying:
\[ Z = \sqrt{(-400)^2 + 300^2} = \sqrt{160000 + 90000} = 500 \, \Omega. \]
The rms current is:
\[ i_{\text{rms}} = \frac{V_{\text{rms}}}{Z} = \frac{50}{500} = 0.1 \, \text{A}. \]
The rms voltage across the capacitor is:
\[ V_{\text{rms, capacitor}} = X_C \cdot i_{\text{rms}} = 500 \times 0.1 = 50 \, \text{V}. \]
Find output voltage in the given circuit.
The net current flowing in the given circuit is ___ A.
If the equation \( a(b - c)x^2 + b(c - a)x + c(a - b) = 0 \) has equal roots, where \( a + c = 15 \) and \( b = \frac{36}{5} \), then \( a^2 + c^2 \) is equal to .