
The inductive reactance is:
\[ X_L = \omega L = 100 \times 1 = 100 \, \Omega. \]
The capacitive reactance is:
\[ X_C = \frac{1}{\omega C} = \frac{1}{100 \times 20 \times 10^{-6}} = 500 \, \Omega. \]
The total impedance is:
\[ Z = \sqrt{(X_L - X_C)^2 + R^2} = \sqrt{(100 - 500)^2 + 300^2}. \]
Simplifying:
\[ Z = \sqrt{(-400)^2 + 300^2} = \sqrt{160000 + 90000} = 500 \, \Omega. \]
The rms current is:
\[ i_{\text{rms}} = \frac{V_{\text{rms}}}{Z} = \frac{50}{500} = 0.1 \, \text{A}. \]
The rms voltage across the capacitor is:
\[ V_{\text{rms, capacitor}} = X_C \cdot i_{\text{rms}} = 500 \times 0.1 = 50 \, \text{V}. \]
Find output voltage in the given circuit. 

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.