The voltage across the inductor is given by:
\[ V_L = I X_L, \]
where:
- \( I \) is the current in the circuit,
- \( X_L \) is the inductive reactance given by:
\[ X_L = \omega L = 2\pi f L. \]
Given:
- \( V_L = 31.4 \, \text{V} \),
- \( L = 10 \, \text{mH} = 10 \times 10^{-3} \, \text{H} \),
- Frequency \( f = 50 \, \text{Hz} \).
Step 1: Calculate the Inductive Reactance
\[ X_L = 2\pi f L = 2 \times 3.14 \times 50 \times 10 \times 10^{-3} = 3.14 \, \Omega. \]
Step 2: Calculate the Current Using the formula \( V_L = I X_L \):
\[ 31.4 = I \times 3.14. \]
Solving for \( I \):
\[ I = \frac{31.4}{3.14} = 10 \, \text{A}. \]
Therefore, the current in the circuit is \( 10 \, \text{A} \).
Find output voltage in the given circuit.
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).